Skip to main content

Advertisement

Log in

The hydrogeologic connectivity of a low-flow saline-spring fen peatland within the Athabasca oil sands region, Canada

La connectivité hydrogéologique d’une tourbière de fagnes avec des sources d’eau salée de faible débit, au sein de la région des sables bitumineux d’Athabasca, Canada

La conectividad hidrogeológica de una turbera con un manantial salino de bajo flujo dentro de una región de arenas petrolíferas en Athabasca, Canadá

加拿大阿萨巴斯卡油砂地区盐泉沼泽泥炭地枯水流量时的水文地质连通性研究

A conectividade hidrogeológica de uma nascente salina de baixa vazão em turfeiras topotróficas na região de areias betuminosas de Athabasca, Canadá

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Saline springs can provide clues as to the nature of groundwater flow, including how it relates to subsurface wastewater storage and the distribution of solutes in the landscape. A saline-spring peatland neighboring a proposed in-situ oil facility was examined near Fort McMurray, Alberta (Canada). The study area is situated just north of a saline groundwater discharge zone, which coincides with the erosional edge of the Cretaceous Grand Rapids Formation. Na+ (mean 6,949 mg L−1) and Cl (mean 13,776 mg L−1) were the dominant salts within the peatland, which increased by an order of magnitude in the opposite direction to that of the local groundwater flow. Rivers and freshwater wetlands within the study area had anomalously high salinities, in some cases exceeding 10,000 mg L−1 total dissolved solids within deeper sediments. Saline-spring features were observed as far as 5 km from the study area. A low-permeability mineral layer underlying the peatland restricted vertical groundwater exchange (estimated to be less than several mm over the 4-month study period). Sand and gravel lenses underlying the fen’s high-salinity zone may function as areas of enhanced discharge. High Cl/Br ratios point to halite as a potential source of salinity, while δ18O and δ2H signatures in groundwater were lower than modern-day precipitation or Quaternary aquifers. The complex connectivity of saline-spring wetlands within the landscape has implications for industry and land-use managers, and justifies incorporating them into monitoring networks to better gauge the magnitude and flow history of natural saline discharge in the oil sands region.

Résumé

Les sources salines peuvent fournir des indices quant à la nature de l’écoulement des eaux souterraines, y compris comment elles sont associées au stockage souterrain des eaux usées et à la distribution des solutés dans l’environnement. Une tourbière avec des sources salines située à proximité d’un projet d’exploitation de pétrole a été étudiée près de Fort McMurray, en Alberta (Canada). La zone d’étude est située juste au nord d’une zone d’émergence d’eau souterraine saline, coïncidant avec la bordure d’érosion de la formation crétacé des Grands Rapides. Les ions Na+ (concentration moyenne de 6949 mg L-1) et Cl- (concentration moyenne de 13 776 mg L-1) sont les sels dominants au sein de la tourbière et dont la concentration a augmenté d’un ordre de grandeur dans la direction opposée de l’écoulement local des eaux souterraines. Les rivières et les zones humides d’eau douce au sein de la zone d’étude avaient des salinités élevées anormalement, dépassant dans certains cas les 10,000 mg L-1 de solides dissous totaux dans les sédiments profonds. Ces propriétés des sources salinées ont été observées au-delà de 5 km de la zone d’étude. Une formation minérale de faible conductivité hydraulique sous-jacente à la tourbière restreint les échanges verticaux d’eau souterraine (estimée à moins de quelques mm au cours de la période d’étude, soit 4 mois). Des lentilles de sable et de graviers sous-jacents à la zone de fagnes à haute salinité pourraient fonctionner comme des zones de décharge renforcées. Les rapports élevés Cl / Br sont en faveur de l’halite comme source potentielle de salinité, tandis que les signatures isotopiques δ18O et δ2H dans les eaux souterraines sont inférieures aux valeurs des précipitations journalières actuelles ou des aquifères quaternaires. La connectivité complexe des zones humides à sources salines dans l’environnement a des implications pour les gestionnaires de l’industrie et des terres, et justifie de les intégrer dans les réseaux de surveillance afin de mieux évaluer l’ampleur et l’historique des flux naturels salins dans la région des sables bitumineux.

Resumen

Nascentes salinas podem fornecer pistas sobre a natureza do fluxo de águas subterrâneas, incluindo a forma como ele se relaciona com o armazenamento subsuperficial de águas residuais e da distribuição de solutos na paisagem. Uma nascente salina em turfeiras vizinha a uma área proposta para instalação de uma refinaria de óleo in situ foi examinada perto de Fort McMurray, Alberta (Canadá). A área de estudo está situada a norte de uma zona de descarga de água subterrânea salina, que coincide com a borda de erosão da Formação Cretácea Grand Rapids. Na+ (média 6,949 mg L-1) e Cl- (média 13,776 mg L-1) foram os sais dominantes dentro da turfa, que aumentaram uma ordem de grandeza no sentido oposto ao do fluxo de água subterrânea local. Rios e zonas húmidas de água doce na área de estudo tiveram anormalmente altas salinidades, em alguns casos superiores a 10,000 mg L-1 de sólidos dissolvidos totais dentro de sedimentos mais profundos. As feições das nascentes salinas foram observadas a distancias maiores que 5 km da área de estudo. Uma camada mineral de baixa permeabilidade subjacente à turfa restringiu trocas de águas subterrâneas verticais (estimada em menos do que alguns mm ao longo do período de estudo de quatro meses). Lentes de areia e cascalho subjacentes zona de alta salinidade da turfeira topotrófica podem funcionar como zonas de descarga melhoradas. Altas razões Cl/Br apontam para halita como uma fonte potencial de salinidade, enquanto as assinaturas de δ18O e δ2H nas águas subterrâneas foram menores do que a precipitação dos dias modernos ou aquíferos Quaternários. A conectividade complexa de áreas úmidas com nascentes salina dentro da paisagem tem implicações para os gestores da indústria e do uso da terra, e justifica incorporá-los em redes de monitoramento para avaliar melhor a magnitude e o fluxo histórico de descarga salina natural na região das areias betuminosas.

摘要

盐泉可以为地下水的流动特性提供线索,包括其与此地形地貌中地下污水储存和溶质分布是怎样关联的。本研究调查了(加拿大)亚伯达省麦克默里堡附近拟建现场石油设施旁边一个盐泉沼泽地。研究区就位于一个地下咸水排泄区的北边,排泄区与白垩纪大急流地层侵蚀边缘相一致。泥炭地中的盐分主要为Na+(平均6 949 mg/L)和Cl-(平均13 776 mg/L),这里Na+和Cl-的含量比对面当地的地下水水流中的含量增加了一个数量级。研究区内的河流和淡水湿地含盐量异乎寻常的高,有些情况下,较深沉积物中的TDS含量甚至超过了10000 mg/L。研究区5 km以外的地方都发现有盐泉特征。泥炭地下层的低渗透性矿物层限制了垂向地下水交换(估计四个月研究期的垂向地下水交换不到几毫米)。沼泽高盐地带下方的砂砾透镜体可能起到了增强排泄区的作用。Cl/Br很高的比率表明岩盐是潜在的盐分来源,而地下水中δ18O和δ2H的特征值都比现代降水或第四纪含水层水中的值要低。此地盐泉湿地的复杂连通性对工业和土地利用管理者有启示作用,将这些启示融入监测网络中,可以更好地测量油砂地区天然盐分排放量的多少和流动轨迹。

Resumo

Nascentes salinas podem fornecer pistas sobre a natureza do fluxo de águas subterrâneas, incluindo a forma como ele se relaciona com o armazenamento subsuperficial de águas residuais e da distribuição de solutos na paisagem. Uma nascente salina em turfeiras vizinha a uma área proposta para instalação de uma refinaria de óleo in situ foi examinada perto de Fort McMurray, Alberta (Canadá). A área de estudo está situada a norte de uma zona de descarga de água subterrânea salina, que coincide com a borda de erosão da Formação Cretácea Grand Rapids. Na+ (média 6,949 mg L-1) e Cl- (média 13,776 mg L-1) foram os sais dominantes dentro da turfa, que aumentaram uma ordem de grandeza no sentido oposto ao do fluxo de água subterrânea local. Rios e zonas húmidas de água doce na área de estudo tiveram anormalmente altas salinidades, em alguns casos superiores a 10,000 mg L-1 de sólidos dissolvidos totais dentro de sedimentos mais profundos. As feições das nascentes salinas foram observadas a distancias maiores que 5 km da área de estudo. Uma camada mineral de baixa permeabilidade subjacente à turfa restringiu trocas de águas subterrâneas verticais (estimada em menos do que alguns mm ao longo do período de estudo de quatro meses). Lentes de areia e cascalho subjacentes zona de alta salinidade da turfeira topotrófica podem funcionar como zonas de descarga melhoradas. Altas razões Cl/Br apontam para halita como uma fonte potencial de salinidade, enquanto as assinaturas de δ18O e δ2H nas águas subterrâneas foram menores do que a precipitação dos dias modernos ou aquíferos Quaternários. A conectividade complexa de áreas úmidas com nascentes salina dentro da paisagem tem implicações para os gestores da indústria e do uso da terra, e justifica incorporá-los em redes de monitoramento para avaliar melhor a magnitude e o fluxo histórico de descarga salina natural na região das areias betuminosas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andriashek L (2003) Quaternary geological setting of the Athabasca oil sands (in situ) area, northeast Alberta. EUB/AGS Geo-Note 2002-03, Alberta Energy and Utilities Board, Edmonton, Alberta, 295 pp

  • Andriashek LD, Atkinson N (2007) Buried channels and glacial-drift aquifers in the Fort McMurray region, northeast Alberta. Geol Surv Earth Sci Rep 01, Alberta Energy and Utilities Board, Edmonton, AB , 170 pp

  • ASTM Standard D2488-09a (2009) Standard practice for description and identification of soils (visual-manual procedure). ASTMl, West Conshohocken, PA. doi:10.1520/D2488-09A

  • Athabasca Oil Sands Corp (2011) Application for approval of the athabasca oil sands corp. Hangingstone Project, March 31

  • Bachu S (1995) Synthesis and model of formation-water flow, Alberta Basin, Canada. AAPG Bull 79(8):1159–1178

    Google Scholar 

  • Bachu S, Underschultz BH (1993) Hydrogeology of formation waters, northeastern Alberta. AAPG Bull 77(10):1745–1768

    Google Scholar 

  • Bachu S, Perkins EH, Hitchon B, Lytviak AT, Underschultz JR (1989) Evaluation of effects of waste injection in the cold lake area, Alberta. Alta Geological Surv Bulletin No 60, 57 pp

  • Bachu S, Underschultz BH, Hitchon B, Cotterill D (1993) Regional-scale subsurface hydrogeology in northeastern Alberta. Alberta Geological Survey, Edmonton, AB, 49 pp

    Google Scholar 

  • Barson D, Bachu S, Esslinger P (2001) Flow systems in the Mannville Group in the east-central Athabasca area and implications for steam-assisted gravity drainage (SAGD) operations for in-situ bitumen production. Bull Can Petrol Geol 49(3):376–392

    Article  Google Scholar 

  • Berard G, Applin D, Cloutis E, Stromberg J, Sharma R, Mann P, Grasby S, Bezys R, Horgan B, Londry K, Rice M, Last B, Last F, Badiou P, Goldsborough G, Bell J (2013) A hypersaline spring analogue in Manitoba, Canada for potential ancient spring deposits on Mars. Icarus 224:399–412

    Article  Google Scholar 

  • Borneuf D (1983) Springs of Alberta. Earth Sci Rep 82-3, RCA, Edmonton, AB, p 105

  • Bothe RA, Abraham C (1993) Evaporation and evapotranspiration in Alberta 1986 to 1992 addendum. Surface Water Assessment Branch, Technical Services and Monitoring Division, Water Resources Services, Alberta Environmental Protection

  • Broughton PL (2013) Devonian salt dissolution-collapse breccias flooring the Cretaceous Athabasca oil sands deposit and development of lower McMurray Formation sinkholes, northern Alberta Basin, Western Canada, Sediment. Geology 283:57–82

    Google Scholar 

  • Carrigy MA, McLaws IJ (1973) Athabasca tar sands study: the environmental impact of in-situ technology. Research Council of Alberta, Edmonton, AB, 88 pp

    Google Scholar 

  • Carpenter AB (1978) Origin and chemical evolution of brines II Sedimentary Basin. SPE 7504, Society of Petroleum Eng, Richardson, TX, 12 pp

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990a) Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin, I: chemistry. Appl Geochem 5(4):375–395

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990b) Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin, II: isotope systematics and water mixing. Appl Geochem 5(4):397–413

    Article  Google Scholar 

  • Cooper D (2011) Oil sands leak turned mine into pond: Shell finds innovative fix for a never-before-seen problem. Edmonton J October 15th, 2011

    Google Scholar 

  • Cowie BR, James B, Mayer B (2015) Distribution of total dissolved solids in McMurray Formation Waters in the Athabasca oil sands region, Canada. Am Assoc Pet Geol Bull 99(1):77–90

    Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338–350

    Article  Google Scholar 

  • Dewar WA, McDonald P (1961) Determination of dry matter in silage by distillation with toluene. J Sci Food Agric 12:790–795

    Article  Google Scholar 

  • Devito K, Mendoza C, Qualizza C (2012) Conceptualizing water movement in the Boreal Plains: implications for watershed reconstruction. Synthesis report prepared for the Canadian Oil Sands Network for Research and Development. Environmental and Reclamation Research Group, Canada, 164 pp

    Google Scholar 

  • Environment Canada (2014) Canadian climate normals 1981–2010 station data. Government of Canada, Ottawa

    Google Scholar 

  • ERCB (1994) Injection and disposal wells: well classifications, completions, logging, and testing requirements, Directive 051. Energy Resources and Conservation Board, Calgary, AB

    Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Ferguson G (2014) Deep injection of wastewater in the Western Canada Sedimentary Basin. Groundwater. doi: 10.1111/gwat.12198

  • Ford DC (1998) Principal features of evaporite karst in Canada. Carbon Evapor 12(1):15–23

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gibson JJ, Fennell J, Birks SJ, Yi Y, Moncur MC, Hansen B, Jasechko S (2013) Evidence of discharging saline formation water to the Athabasca River in the oil sands mining region, northern Alberta. Can J Earth Sci 50:1244–1257

    Article  Google Scholar 

  • Gordon TM, Kokot SL, Parks KP (2002) Guide to recent publications on inorganic water-rock interactions relevant to deep-well wastewater disposal in carbonate-evaporite formations in the Athabasca Oil Sands Area. EUB/AGS special report 52, AGS, Edmonton, AB, 17 pp

  • Grasby SE (2006) Brine springs of northern Alberta. In: Hannigan PK (ed) Potential for carbonate-hosted lead-zinc Mississippi Valley-type mineralization in northern Alberta and southern Northwest Territories: geoscience contributions, Targeted Geoscience Initiative. Geol Surv Canada Bull 591:241–254

  • Grasby SE, Chen Z (2005) Subglacial recharge into the Western Canada Sedimentary Basin: impact of Pleistocene glaciation on basin hydrodynamics. Geol Soc Am Bull 117(3):500–514

    Article  Google Scholar 

  • Grasby SE, Londry KL (2007) Biogeochemistry of hypersaline springs supporting a mid-continent marine ecosystem: an analogue for Martian springs? Astrobiology 7(4):662–683

    Article  Google Scholar 

  • Gupta I, Wilson AM, Rostron BJ (2012) Cl/Br compositions as indicators of the origin of brines: hydrogeology of the Alberta Basin, Canada. Geol Soc Am Bull 124:200–212

    Article  Google Scholar 

  • Hackbarth D, Nastasa N (1979) The hydrogeology of the Athabasca Oil Sands Area. ARC Bull 98, ARC, Edmonton, AB, 64 pp

  • Haldorsen S, Kruger J (1990) Till genesis and hydrogeological properties. Nord Hydrol 21:81–94

    Google Scholar 

  • Hanschke T, Baird AJ (2001) Time-lag errors associated with the use of simple standpipe piezometers in wetland soils. Wetlands 21(3):412–421

    Article  Google Scholar 

  • Hinton MJ, Schiff SL, English MC (1993) Physical properties governing groundwater flow in a glacial till catchment. J Hydrol 142:229–249

    Article  Google Scholar 

  • Hitchon B (1969) Fluid flow in the western Canada sedimentary basin, 2: effect of geology. Water Resour Res 5(2):460–469

    Article  Google Scholar 

  • Hitchon B, Levinson A, Reeder S (1969) Regional variations of river water composition resulting from halite solution, Mackenzie River Drainage Basin, Canada. Water Resour Res 5(6):1395–1403

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Waterways Experimental Station, Bull 36, US Army Corps of Engineers, Vicksburg, MI, 57 pp

  • IAEA/WMO (2001) Global network for isotopes in precipitation: The GNIP database. http://isohis.iaea.org. Accessed 10 July 2013

  • Jasechko S, Gibson JJ, Birks SJ, Yi Y (2012) Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region. Appl Geochem 27:2068–2076

    Article  Google Scholar 

  • Jordaan SM (2012) Land and water impacts of oil sands production in Alberta. Environ Sci Technol 46:3611–3617

    Article  Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1988) Hydrogeology of two Saskatchewan tills, I: fractures, bulk permeability, and spatial variability of downward flow. J Hydrol 101:97–121

    Article  Google Scholar 

  • Kesler SE, Appold MS, Martini AM, Walter LM, Huston TJ, Kyle JR (1995) Na–Cl–Br systematics of mineralizing brines in Mississippi Valley-type deposits. Geology 23(7):641–644

    Article  Google Scholar 

  • Last WM, Ginn FM (2005) Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology. Saline Systems 1:10. doi:10.1186/1746-1448-1-10

    Article  Google Scholar 

  • Lemay T (2002) Geochemical and isotope data for formation water from selected wells, Cretaceous to Quaternary succession, Athabasca Oil Sands (in situ) area, Alberta. EUB/AGS Geo-note 2002-02, Energy and Utilities Board, Edmonton, AB, 71 pp

    Google Scholar 

  • Mahood R, Verhoef M, Stoakes FA (2012) Paleozoic stratigraphic framework beneath the Muskeg River Mine (Twp 95, Rge 9-10W4): controls and constraints on present day hydrogeology. Canadian Society of Petroleum Geology, Geoconvention 2012, Calgary, AB, May 2012, 8 pp

  • Marshal IB, Schut P, Ballard M (1999) Canadian ecodistrict climate normals for Canada 1961-1990. A national ecological framework for Canada: Attribute data. Environmental quality branch, ecosystems science directorate, environment Canada and research branch, agriculture and agri-food Canada, Ottawa/Hull

  • McKillop WB, Patterson RT, Delorme LD, Nogrady T (1992) The origin, physico-chemistry and biotics of sodium chloride dominated saline waters of the western shore of Lake Winnipegosis, Manitoba. Can Field Nat 106:454–473

    Google Scholar 

  • Michael K, Machel HG, Bachu S (2003) New insights into the origin and migration of brines in deep Devonian aquifers, Alberta Canada. J Geochem Explor 80:193–219

    Article  Google Scholar 

  • Natural Regions Committee (2006) Natural regions and subregions of Alberta. Pub. no. T/582, Government of Alberta, Edmonton, AB, 264 pp

  • Nexen Inc and OPTI Canada Inc (2007) Application for the approval of the Long Lake South Project. Alberta Energy and Utilities Board and Alberta Environment, Edmonton, AB

  • Ozoray G, Hackbarth D, Lytviak A (1980) Hydrogeology of the Bitumount-Namur Lake area, Alberta. Earth Science Report 78–6, Research Council of Alberta, Edmonton, AB, 14 pp

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chapter A43. http://pubs.usgs.gov/tm/06/a43/. Accessed July 2013

  • Rittenhouse G (1967) Bromine in oilfield waters and its use in determining possibilities of origin of these waters. Am Assoc Pet Geol Bull 51:2430–2440

    Google Scholar 

  • Seo HH, Choe J (2001) Numerical simulations for effects of anisotropy and heterogeneity on well responses to slug tests. Environ Geol 40:1066–1074

    Article  Google Scholar 

  • Scarlett SJ, Price JS (2013) The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta. Mires Peat 12(4):1–12

    Google Scholar 

  • Sharp JM (1984) Hydrogeologic characteristics of shallow glacial drift aquifers in dissected till plains (north-central Missouri). Groundwater 22(6):683–689

    Article  Google Scholar 

  • Stephenson DA, Fleming AH, Mickelson DM (1988) Glacial deposits. In: Back W, Rosenhein JS, Seaber PR (eds) Hydrogeology: the geology of North America, vol 0-2. Geological Society of America,, Boulder, CO, pp 301–314

  • Stewart SA, Lemay TG (2011) Inorganic water chemistry of saline fens in northeastern Alberta (NTS 74D). ERCB/AGS Open File Report 2011-09. Energy Resources Conservation Board and AGS, Edmonton, AB

  • Surridge BWJ, Baird AJ, Heathwaite AL (2005) Evaluating the quality of hydraulic conductivity estimates from piezometer slug tests in peat. Hydrol Process 19(6):1227–1244

    Article  Google Scholar 

  • Timoney K, Lee P (2001) String and net-patterned salt marshes: rare landscape elements of Boreal Canada. Can Field Nat 115(3):406–412

    Google Scholar 

  • Value Creations Inc (2012) TriStar Pilot Project: application and project development plan. Value Creations, Calgary, AB

  • van der Kamp G (2001) Methods for determining the in situ hydraulic conductivity of shallow aquitards: an overview. Hydrogeology J 9(1):5–16

  • van der Kamp G, Hayashi M (2009) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeology J 17(1):203–214

    Article  Google Scholar 

  • Walter LM, Stueber AM, Huston TJ (1990) Br–C–-Na systematics in Illinois basin fluids: constraints on fluid origin and evolution. Geology 18:315–318

  • Wells CM, Price JS (2015) A hydrologic assessment of a saline spring fen in the Athabasca oil sands region, Alberta, Canada: a potential analogue for oil sands reclamation, Hydrol Process doi: 10.1002/hyp.10518

  • Wilson TP, Gabet RM (1991) Bromide uptake by soils and shales, EOS. Trans Am Geophys Union 72(44):177

    Google Scholar 

  • Winter TC, Rosenberry DO (1998) Hydrology of prairie pothole wetlands during drought and deluge: a 17-year study of the Cottonwood Lake wetland complex in North Dakota in perspective to long term measured and proxy hydrological records. Climate Change 40:189–209

    Article  Google Scholar 

  • Xu S, Leri AS, Myneni SCB, Jaffe PR (2004) Uptake of bromide by two wetland plants (typa latifolia L. and phragmites australis (Cav.) trin. ex steud). Environ Sci Technol 38(21):5642–5648

Download references

Acknowledgements

The authors wish to thank R. Andersen, J. Goetz, P. Macleod, S. Scarlett, E. Bocking, J. Sherwood, S. Brown, Dr. R. Petrone, Dr. D. Cooper and S. Ketcheson for their assistance in the field. We gratefully acknowledge funding from a grant to J.S. Price from the Natural Science and Engineering Research Council (NSERC) of Canada Collaborative Research and Development Program, co-funded by Suncor Energy Inc., Imperial Oil Resources Limited and Shell Canada Energy. Data and discussion provided by Value Creations Inc., on the local hydrogeologic setting of the saline fen study area, are also greatly appreciated. Dr. John Duke performed the neutron atomic adsorption analysis for bromide at the University of Alberta’s SLOWPOKE nuclear reactor facility in Edmonton and provided some valuable feedback on its interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey M. Wells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, C.M., Price, J.S. The hydrogeologic connectivity of a low-flow saline-spring fen peatland within the Athabasca oil sands region, Canada. Hydrogeol J 23, 1799–1816 (2015). https://doi.org/10.1007/s10040-015-1301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1301-y

Keywords

Navigation