Advertisement

Hydrogeology Journal

, Volume 23, Issue 7, pp 1573–1586 | Cite as

Estimating aquifer recharge in fractured hard rock: analysis of the methodological challenges and application to obtain a water balance (Jaisamand Lake Basin, India)

  • Melissa M. Rohde
  • W. Mike Edmunds
  • David Freyberg
  • Om Prakash Sharma
  • Anupma Sharma
Report

Abstract

Groundwater recharge is an important metric for sustainable water management, particularly in semi-arid regions. Hard-rock aquifers underlie two-thirds of India and appropriate techniques for estimating groundwater recharge are needed, but the accuracy of such values is highly uncertain. The chloride mass balance (CMB) method was employed to estimate annual groundwater recharge rates in a monsoon-dependent area of Jaisamand Lake basin in Rajasthan, which contains the Gangeshwar watershed. A monitoring program was established within the watershed during summer 2009, with local participation for the collection of rainfall and groundwater samples. Groundwater recharge was estimated spatially over a 3-year period with pre-monsoon and post-monsoon datasets. Recharge rates estimated using the CMB method were then compared to those estimated using the water-table fluctuation (WTF) method. Specific yield was 0.63 % and assumed to be homogenous across the watershed. The average recharge rate derived from the WTF method (31 mm/year) was higher than that derived from the CMB method (24.3 mm/year). CMB recharge rates were also applied to obtain a water balance for the watershed. CMB recharge rates were used to estimate annual groundwater replenishment and were compared with estimates of groundwater withdrawal using Landsat imagery. Over the 2009–2011 study period, groundwater demand was about seven times greater than the estimated groundwater renewal of 5.6 million cubic meters. This analysis highlights the challenges associated with estimating groundwater recharge in fractured hard-rock aquifers, and how renewable groundwater-resource estimates can be used as a metric to promote sustainable water use.

Keywords

Groundwater recharge/water budget Crystalline rocks Arid regions Agriculture India 

Estimation de la recharge des aquifères de roche de socle fracturé: analyse des enjeux méthodologiques et application pour obtenir un bilan en eau (bassin du lac Jaisamand, Inde)

Résumé

La recharge des eaux souterraines est un paramètre important pour la gestion durable des ressources en eau, particulièrement dans les régions semi-arides. Les aquifères de socle constituent le sous-sol des deux tiers de l’Inde; des techniques adaptées pour estimer la recharge des eaux souterraines sont nécessaires, mais la précision de ces valeurs est très incertaine. La méthode du bilan des chlorures (CMB) a été utilisée pour estimer le taux de recharge annuelle des eaux souterraines dans une région à climat influencé par la mousson dans les Aravalli Hills du Rajasthan, où se trouve le bassin versant de Gangeshwar. Un programme d’acquisition de données a été établi dans le bassin versant pendant l’été 2009, avec une participation locale pour la collecte d’échantillons de pluie et des eaux souterraines. La recharge des eaux souterraines a été estimée spatialement sur une période de 3 ans avec des jeux de données pré et post mousson. Les taux de recharge estimés avec la méthode CMB ont été comparés avec ceux déduits de la méthode des variations du niveau piézométrique (WTF). La porosité efficace est de 0.63 % et est supposée homogène à l’échelle du bassin versant. L’estimation de la recharge déduite de la méthode WTF (31 mm/an) est supérieure à celle déduite de la méthode CMB (24.3 mm/an). Les taux de recharge CMB ont aussi été utilisés pour établir un bilan hydrologique du bassin versant. Les taux de recharge CMB ont été utilisés pour estimer la recharge annuelle des aquifères et ont été comparés avec des estimations des prélèvements d’eau souterraine utilisant l’imagerie Landsat. Sur la période d’étude 2009–2011, la demande en eau souterraine était environ sept fois plus élevée que la recharge des eaux souterraines, estimée à 5.6 millions de mètres cubes. Ce travail souligne d’une part les enjeux associés à l’estimation de la recharge des aquifères de socle fracturé et d’autre part comment les estimations de la ressource en eau souterraine renouvelable peuvent être utilisées pour promouvoir l’utilisation durable de l’eau.

Estimación de la recarga de acuíferos en roca dura fracturada: análisis de los desafíos y las aplicaciones metodológicas para obtener un balance de agua (Cuenca del lago Jaisamand, India)

Resumen

La recarga de agua subterránea es una métrica importante para la gestión sostenible del agua, especialmente en las regiones semiáridas. Los acuíferos de roca dura subyacen dos terceras partes de la India; se necesitan técnicas apropiadas para la estimación de la recarga de acuíferos, pero la exactitud de tales valores es altamente incierta. Se empleó el método de balance de masa de cloruro (CMB) para estimar las tasas anuales de recarga del agua subterránea en una zona que depende del monzón en Aravalli Hills de Rajasthan, que contiene la cuenca de Gangeshwar. Se estableció un programa de monitoreo dentro de la cuenca durante el verano de 2009, con la participación local para la recolección de muestras de lluvia y de aguas subterráneas. La recarga del agua subterránea se estimó espacialmente en un período de 3 años con conjuntos de datos de pre-monzón y de post-monzón. La tasa de recarga estimada utilizando el método CMB se comparó con la estimada usando la fluctuación del nivel freático método (WTF). El rendimiento específico fue de 0.63 % y se supuso que es homogéneo en toda la cuenca. La tasa media de recarga obtenida por el método de WTF (31 mm/año) fue superior a la del método CMB (24.3 mm/año). Las tasas de recarga por CMB también se aplicaron para obtener un balance de agua para la cuenca. Se utilizaron las tasas de recarga por CMB para estimar la reposición anual del agua subterránea y se compararon con las estimaciones de extracción de agua subterránea utilizando imágenes Landsat. Durante el estudio del período 2009–2011, la demanda de agua subterránea era cerca de siete veces mayor que la renovación de las aguas subterráneas, estimada en 5.6 millones de metros cúbicos. Este análisis pone de relieve los desafíos asociados con la estimación de la recarga del agua subterránea en los acuíferos de rocas duras fracturadas, y cómo se pueden utilizar las estimaciones del recurso renovable agua subterránea como una medida para promover el uso sostenible del agua.

估算断裂硬岩中的含水层补给:获取(印度Jaisamand湖泊盆地)水平衡方法上的挑战和方法应用分析

摘要

地下水补给是水可持续管理的一个重要的度量标准,尤其是在半干旱地区。硬岩含水层分布面积在印度占三分之二;估算地下水补给需要适宜技术,但这些数值的精确度非常靠不住。采用氯化物质量平衡方法估算了拉贾斯坦邦阿拉瓦利山区季风区每年的地下水补给量,这个季风区包括Gangeshwar流域。2009年夏天在流域内开展了监测行动,当地部门参与了降雨和地下水样品的收集工作。根据季风前和季风后数据集估算了三年期的地下水补给量。然后,把采用氯化物质量平衡法估算的补给量与采用水位波动法估算的补给量进行了对比。单位出水量为0.63 %,并假定在整个流域均质。通过水位波动法得到的平均补给量(31 mm/年)比通过氯化物质量平衡法得到的平均补给量(24.3 mm/年)要高。也利用氯化物质量平衡法得到流域的水平衡。利用氯化物质量平衡法获取的补给量估算每年的地下水补充量,并利用地球资源卫星影像与地下水抽取量进行了对比。2009年至2011年研究期间,地下水需求大约是地下水估算更新量560万立方的7倍。这个分析结果强调了断裂硬岩含水层地下水补给方面的挑战,以及强调了可更新的地下水补给估算值如何作为一个度量标准来促进可持续的水利用。

Estimativa de recarga em aquífero fraturado: análise dos desafios metodológicos e aplicação para obtenção de um balanço hídrico (Bacia do Lago Jaisamand, Índia)

Resumo

A recarga das águas subterrâneas é uma métrica importante para o gerenciamento sustentável da água, particularmente em regiões semiáridas. Os aquíferos fraturados estão presentes em dois terços do território da Índia; técnicas adequadas para estimativa da recarga subterrânea são necessárias, porém a acurácia de tais estimativas é altamente incerta. O método do balanço de massa de cloreto (BMC) foi aplicado para estimativa anual das taxas de recarga em uma área de monções nas Montanhas Aravalli do Rajastão, a qual abrange a bacia hidrográfica de Gangeshwar. Um programa de monitoramento foi implantado dentro dessa bacia com coletas de amostras de precipitação e águas subterrâneas durante o verão de 2009. A recarga foi estimada espacialmente durante um período de 3 anos com um conjunto de dados que inclui pré-monção e pós-monção. As estimativas de recarga usando o BMC foram comparadas com as estimativas do método da variação da superfície livre (VSL) do aquífero. O valor do rendimento específico do solo usado foi de 0.63 % e considerado homogêneo ao longo de toda a bacia. A taxa média de recarga obtida pelo método VSL (31 mm/ano) foi maior em relação à obtida pelo método BMC (24.3 mm/ano). As taxas de recarga do método BMC também foram usadas para obtenção de um balanço hídrico para a bacia. As taxas de recarga do método BMC foram empregadas para estimar a reposição anual de águas subterrâneas e foram comparadas, por meio de imagens de satélite Landsat, com as quantidades de águas subterrâneas retiradas. A demanda por águas subterrâneas foi de aproximadamente sete vezes maior à reposição subterrânea de 5.6 milhões de metros cúbicos durante o período de estudo (2009–2010). Esta análise destaca os desafios associados à estimava de recarga em aquíferos fraturados e também como as estimativas de recursos hídricos subterrâneos renováveis podem ser usadas como uma métrica para promover o uso sustentável de água.

Notes

Acknowledgements

During the processing of this manuscript, our dear colleague and co-author Prof. W. Mike Edmunds sadly passed away (April 28, 2015). Prof. Edmunds played a large role in the conceptualization of this research and its support throughout. His dedication to the field of hydrogeology and his role as a trustee for Wells for India will remain an inspiration to us. We would like to thank Sahyog Sansthan, Wells for India’s local partner organization, in the long-term cooperation of this study. The collection of field data was made possible with the help of Heeralal Sharma, Suresh Rawat, and Om Prakash Chobisa. We would especially like to thank Somendra Sharma at Wells for India for his on-going coordination and assistance with this research. At Stanford University we would like to thank Nancy Thomas at the Spatial Analysis Center, and Michael “Doc” Edge at the Department of Statistics. A special thank you goes to John Gates at the University of Nebraska and Steve Gorelick at Stanford University for their helpful reviews on this manuscript. The Kellogg Fund, the Huber Fund, and a National Science Foundation Graduate Research Fellowship awarded to the first author funded this research. This research was conducted within Jaisamand Lake basin, which is currently a pilot site for the Global Network for Water and Development Information for Arid Lands (G-WADI)—a UNESCO program that promotes international and regional cooperation to strengthen water management in arid regions.

Supplementary material

10040_2015_1291_MOESM1_ESM.pdf (595 kb)
ESM 1 (PDF 595 kb)

References

  1. Alcalá FJ, Custodio E (2012) Spatial average aquifer recharge through atmospheric chloride mass balance and its uncertainty in continental Spain. Hydrol Process 28:218–236CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, RomeGoogle Scholar
  3. Allison GB (1988) A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. In: Estimation of natural groundwater recharge. NATO Science Series, vol 222. Springer, Heidelberg, Germany, pp 49–72Google Scholar
  4. Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust J Soil Res 16:181–195CrossRefGoogle Scholar
  5. Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58:6–14CrossRefGoogle Scholar
  6. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345. doi: 10.1111/j.1745-6584.2002.tb02511.x CrossRefGoogle Scholar
  7. Brenninkmeijer C, Morrison PD (1987) An automated system for isotopic equilibration of CO2 and H2O for 18O analysis of water. Isot Geosci 66:21–26CrossRefGoogle Scholar
  8. Brouwer C, Prins K, Heibloem M (1989) Irrigation water management: irrigation scheduling. Food and Agriculture Organization, Rome. http://www.fao.org/docrep/t7202e/t7202e00.htm#Contents. Accessed 9 September 2013
  9. Brundtland GH (1987) Report of the World Commission on Environment and Development: our common future. Oxford University Press, Oxford, UKGoogle Scholar
  10. Butterworth JA, Schulze RE, Simmonds LP et al (1999) Hydrological processes and water resources management in a dryland environment IV: long-term groundwater level fluctuations due to variation in rainfall. Hydrol Earth Syst Sci Discuss 3:353–361Google Scholar
  11. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New YorkGoogle Scholar
  12. Custodio E (2011) Estimation of aquifer recharge by means of atmospheric chloride deposition balance in the soil. Contrib Sci 6:81Google Scholar
  13. de Vries J, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17. doi: 10.1007/s10040-001-0171-7 CrossRefGoogle Scholar
  14. Dettinger MD (1989) Reconnaissance estimates of natural recharge to desert basins in Nevada, USA, by using chloride-balance calculations. J Hydrol 106:55–78CrossRefGoogle Scholar
  15. Edmunds WM, Darling WG, Kinniburgh DG (1988) Solute profile techniques for recharge estimation in semi-arid and arid terrain. In: Estimation of natural groundwater recharge. Springer, Dordrecht, The Netherlands, pp 139–157Google Scholar
  16. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213CrossRefGoogle Scholar
  17. Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain. J Hydrol 7:178–197CrossRefGoogle Scholar
  18. FAO (2013) Crop water information: wheat. FAO, Water Development and Management Unit. http://www.fao.org/nr/water/cropinfo_wheat.html. Accessed 9 September 2013
  19. Favreau G, Cappelaere B, Massuel S et al (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45:1–18. doi: 10.1029/2007wr006785 Google Scholar
  20. Gates JB, Edmunds WM, Ma J, Sheppard PR (2008) A 700-year history of groundwater recharge in the drylands of NW China. The Holocene 18:1045–1054. doi: 10.1177/0959683608095575 CrossRefGoogle Scholar
  21. Gaye CB, Edmunds WM (1996) Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal. Environ Geol 27:246–251CrossRefGoogle Scholar
  22. Gieske A, Selaolo E (1988) A proposed study of recharge processes in fracture aquifers of semi-arid Botswana. Springer, Dordrecht, The Netherlands, pp 117–124Google Scholar
  23. Healy R, Cook P (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. doi: 10.1007/s10040-001-0178-0 CrossRefGoogle Scholar
  24. IMD (2012) Districtwise rainfall information. http://www.imd.gov.in/section/hydro/distrainfall/districtrain.html. Accessed 15 January 2013
  25. IWMI (2009) World water and climate atlas. http://www.iwmi.cgiar.org/resources/world-water-and-climate-atlas/. Accessed 15 January 2013
  26. Lapworth DJ, MacDonald AM, Tijani MN et al (2012) Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate. Hydrogeol J 21:673–686. doi: 10.1007/s10040-012-0925-4 CrossRefGoogle Scholar
  27. Macdonald DMJ, Edmunds WM (2014) Estimation of groundwater recharge in weathered basement aquifers, southern Zimbabwe: a geochemical approach. Appl Geochem 42:86–100. doi: 10.1016/j.apgeochem.2014.01.003 CrossRefGoogle Scholar
  28. MacDonald AM, Davies J, Calow RC (2008) African hydrogeology and rural water supply. In: Adelana SMA, MacDonald AM (eds) Applied groundwater studies in Africa. Taylor and Francis, London, pp 127–148Google Scholar
  29. Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40. doi:  10.1029/2004WR003137
  30. Mathieu R, Bariac T (1996) An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate. Water Resour Res 32:779–789Google Scholar
  31. Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Resour Manag 27:4409–4424. doi: 10.1007/s11269-013-0436-7 CrossRefGoogle Scholar
  32. Ministry of Water Resources GOI (2009) Report of the ground water resource estimation committee. Ministry of Water Resources, Gov. of India. http://cgwb.gov.in/documents/gec97.pdf. Accessed 8 August 2013
  33. Molden D, Frenken K, Barker R, et al (2007) Trends in water and agricultural development. In: Water for food, water for life. International Water Management Institute, London, pp 57–89Google Scholar
  34. Mukhopadhyay B, Datar SV, Srivastava HN (1992) Precipitation chemistry over the Indian region. Mausam 43:249–258Google Scholar
  35. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  36. Sami K, Hughes DA (1996) A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface-subsurface model. J Hydrol 179:111–136CrossRefGoogle Scholar
  37. Scanlon BR (2010) Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resour Res 36:395–409. doi: 10.1029/1999WR900240 CrossRefGoogle Scholar
  38. Scanlon BR, Faunt CC (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. doi: 10.1073/pnas.1200311109/-/DCSupplemental/pnas.201200311SI.pdf
  39. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi: 10.1007/s10040-0010176-2 CrossRefGoogle Scholar
  40. Scanlon BR, Keese KE, Flint AL et al (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. doi: 10.1002/hyp.6335 CrossRefGoogle Scholar
  41. Scanlon BR, Mukherjee A, Gates J et al (2010) Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India. Hydrogeol J 18:959–972. doi: 10.1007/s10040-009-0555-7 CrossRefGoogle Scholar
  42. Shah T (2005) Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Sci Technol 51:27–37Google Scholar
  43. Shah T (2012) Community response to aquifer development: distinct patterns in India’s alluvial and hard rock aquifer areas. Irrig Drain 61:14–25CrossRefGoogle Scholar
  44. Shah T, Burke J, Villholth K (2007) Groundwater: a global assessment of scale and significance. In: Molden D (ed) Water for food, water for life. International Water Management Institute, London, pp 395–423Google Scholar
  45. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32. doi: 10.1080/02508060008686794 CrossRefGoogle Scholar
  46. Smith M (1992) CROPWAT. FAO Irrigation and Drainage Paper 46, FAO, RomeGoogle Scholar
  47. Stadler S, Osenbrück K, Duijnisveld W (2010) Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations. Isot Environ Health Stud 46:312–324. doi: 10.1080/10256016.2010.508124 CrossRefGoogle Scholar
  48. Taylor RG, Todd MC, Kongola L et al (2013) Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat Clim Chang 3:374–378CrossRefGoogle Scholar
  49. Ting C-S, Kerh T, Liao C-J (1998) Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeol J 6:282–292CrossRefGoogle Scholar
  50. United Nations (2011) Global drylands: a UN system-wide response. United Nations Environment Management Group, GenevaGoogle Scholar
  51. USGS (2014) EarthExplorer. http://earthexplorer.usgs.gov. Accessed 15 January 2013
  52. Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res. doi: 10.1029/2011wr010562 Google Scholar
  53. Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:458–468CrossRefGoogle Scholar
  54. Zagana E, Obeidat M, Kuells C, Udluft P (2007) Chloride, hydrochemical and isotope methods of groundwater recharge estimation in eastern Mediterranean areas: a case study in Jordan. Hydrol Process 21:2112–2123. doi: 10.1002/hyp.6390 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Melissa M. Rohde
    • 1
    • 5
  • W. Mike Edmunds
    • 2
  • David Freyberg
    • 1
  • Om Prakash Sharma
    • 3
  • Anupma Sharma
    • 4
  1. 1.Department of Civil and Environmental EngineeringStanford UniversityStanfordUSA
  2. 2.School of Geography and EnvironmentUniversity of OxfordOxfordEngland
  3. 3.Wells for IndiaUdaipurIndia
  4. 4.National Institute of HydrologyRoorkeeIndia
  5. 5.Jerry Yang and Akiko Yamazaki Environment and Energy BuildingStanford UniversityStanfordUSA

Personalised recommendations