Abstract
Saltwater intrusion is a common phenomenon in coastal aquifers that can affect the quality of water intended for drinking and irrigation purposes. In order to provide sustainable management options for the coastal aquifer of Malia, located on the Greek island of Crete, a weighted multi-objective optimization methodology is employed. The methodology involves use of the particle swarm optimization algorithm combined with groundwater modelling. The sharp-interface approximation combined with the Ghyben-Herztberg equation is used to estimate the saltwater-intrusion front location. The prediction modelling results show that under the current pumping strategies (over-exploitation), the saltwater-intrusion front will continue to move inland, posing a serious threat to the groundwater quality. The management goal is to maximize groundwater withdrawal rates in the existing pumping wells while inhibiting the saltwater-intrusion front at locations closer to the coastal zone. This is achieved by requiring a minimum hydraulic-head value at pre-selected observation locations. In order to control the saltwater intrusion, a large number of pumping wells must be deactivated and alternative sources of water need to be considered.
Résumé
L’intrusion d’eau salée est un phénomène courant dans les aquifères côtiers qui peuvent affecter la qualité des eaux destinées à des fins de consommation d’eau potable et d’irrigation. Afin de fournir des options de gestion durable de l’aquifère côtier de Malia, situé en Crête, île grecque, une méthodologie d’optimisation multi-objectifs à pondération est utilisée. La méthodologie implique l’utilisation de l’algorithme d’optimisation par essaim de particules combiné à la modélisation des écoulements d’eaux souterraines. L’hypothèse d’une interface nette combinée avec l’équation de Ghyben-Herzberg est utilisée pour estimer la localisation du front d’intrusion d’eau salée. Les résultats de modélisation prédictive montrent que, pour les stratégies de pompages actuels (surexploitation), le front d’intrusion d’eau salée va continuer à progresser vers l’intérieur des terres, ce qui pose une grave menace pour la qualité des eaux souterraines. L’objectif de gestion est de maximiser les débits de pompages des eaux souterraines dans les puits existants tout en inhibant le front d’intrusion d’eau salée dans les secteurs les plus proches de la zone côtière. Ceci est réalisé en imposant des valeurs minimales de charge hydraulique dans des localisations présélectionnées pour l’observation. Afin de contrôler l’intrusion d’eau salée, un grand nombre de puits de pompage doit être désactivé et d’autres sources d’eau doivent être considérées.
Resumen
La intrusión de agua salada es un fenómeno común en los acuíferos costeros que pueden afectar a la calidad de las aguas destinadas para fines potables y de riego. Con el objeto de proporcionar opciones de gestión sostenible en el acuífero costero de Malia, situado en la isla griega de Creta, se emplea una metodología de optimización multi-objetivo ponderado. La metodología consiste en el uso de un algoritmo de optimización por nubes de partículas combinado con el modelado de las aguas subterráneas. Se utiliza una aproximación de la interfaz marcada combinada con la ecuación Ghyben-Herztberg para estimar la ubicación frente de la intrusión de agua salada. Los resultados de los modelos de predicción indican que bajo las actuales estrategias de bombeo (sobreexplotación), el frente de la intrusión del agua salada continuará moviéndose hacia el interior, lo que representa una seria amenaza para la calidad del agua subterránea. El objetivo de gestión es maximizar las tasas de extracción de agua subterránea en los pozos de bombeo existentes al tiempo que se inhiba el avance de la parte frontal de la intrusión de agua salada en lugares cercanos a la zona costera. Esto se logra al requerir un valor mínimo de la carga hidráulica en los lugares de observación pre-seleccionados. Con el fin de controlar la intrusión de agua salada deben ser desactivados un gran número de pozos de bombeo y deben ser consideradas fuentes alternativas de agua.
摘要
海水入侵是沿海含水层一个常见的现象,可影响用于饮用和灌溉的水的水质。为了给位于希腊克里特岛的玛利亚沿海含水层提供可持续的管理选择,采用了加权多目标优化方法。该方法使用了粒子群优化算法和地下水模拟。利用明显界面近似法和Ghyben-Herztberg方程式估算了海水入侵前锋位置。预测模拟结果显示,在目前抽水状态(超采)下,海水入侵前锋将继续向内陆移动,对地下水质造成了严重威胁。管理目标就是在保持现有抽水井抽水量最大化状态下,抑制沿海带附近的海水入侵前锋。通过获取预先选择的观测点的水头值,这个目标可以达到。为了控制海水入侵,必须停止使用大量的抽水井,并且需要考虑替代水源。
Resumo
Intrusão de água salina é um fenômeno comum em aquíferos costeiros que podem afetar a qualidade da água utilizável em propósitos de irrigação e consumo. Para proporcionar opções sustentáveis de gerenciamento para o aquífero costeiro de Mália, localizado na ilha Grega de Creta, uma metodologia multi-objetiva ponderada foi empregada. A metodologia envolve a utilização do algoritmo da otimização por enxame de partículas combinado com a modelagem das águas subterrâneas. A aproximação da interface abrupta combinada com a equação de Ghyben-Herztberg foi utilizada para estimar a localização da frente de intrusão de água salina. Os resultados preditos da modelagem demonstram que sob as estratégias de bombeamento atuais (sobre-explotação), a frente de intrusão de água salina continuará a mover-se terra a dentro, tornando-se uma séria ameaça à qualidade das águas subterrâneas. O objetivo do gerenciamento é maximizar as taxas de retirada de água subterrânea nos poços de bombeamento existentes enquanto inibe a frente de intrusão de água salina próximas as zonas costeiras. Isso é obtido através da medição do valor de carga hidráulica mínimo em locais de observação pré-selecionados. Para controlar a intrusão de água salina, um grande número de poços de bombeamento deve ser desativado e fontes alternativas de água precisam ser consideradas.
Similar content being viewed by others
References
Ababou R, Al-Bitar A (2004) Salt water intrusion with heterogeneity and uncertainty: mathematical modeling and analyses. Dev Water Sci 55:1559–1571
Aivalioti MV, Karatzas GP (2006) Modeling the flow and leachate transport in the vadose and saturated zone: a field application. Environ Model Assess 11(1):81–87
Babu DK, Pinder GF, Niemi A, Ahlfeld DP, Stothoff SA (1997) Chemical transport by three-dimensional groundwater flows. 84-WR-3, Princeton University, Princeton, NJ
Bear J (1999) Conceptual and mathematical modeling. Kluwer, Dordrecht, The Netherlands
Brunke H-P, Schelkes K (2001) A sharp-interface-based approach to salt water intrusion problems: model development and applications. In: First International Conference on Saltwater Intrusion and Coastal Aquifers: Monitoring, Modeling, and Management, Essaouira, Morocco, April 2001
Cai X, McKinney DC, Lasdon LS (2001) Solving non-linear water management models using a combined genetic algorithm and linear programming approach. Adv Water Resour 24:667–676
Cheng AH-D, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater-intruded coastal aquifers. Water Resour Res 36(8):2155–2165
Clerc M, Kennedy J (2002) The particle swarm: explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Dagan G, Zeitoun DG (1998) Seawater–freshwater interface in a stratified aquifer of random permeability distribution. J Contam Hydrol 29(3):185–203
del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195
Dhar A, Datta B (2009) Saltwater intrusion management of coastal aquifers, I: linked simulation-optimization. J Hydrol Eng 14(12):1263–1272
Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25(8–12):899–944
Dokou Z, Karatzas GP (2012) Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrol Sci J 57(5):985–999
Dokou Z, Karatzas GP (2013) Multi-objective optimization for free-phase LNAPL recovery using evolutionary computation algorithms. Hydrol Sci J 58(3):671–685
Dokou Z, Pinder GF (2011) Extension and field application of an integrated DNAPL source identification algorithm that utilizes stochastic modeling and a Kalman filter. J Hydrol 398(3–4):277–291
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 1995, pp 39–43
Elbeltagia E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inform 19:43–53
Finney BA, Samsuhadi Wills R (1992) Quasi-three-dimensional optimization model of Jakarta Basin. J Water Res Plan Manag 118(1):18–31
Gaur S, Chahar BR, Graillot D (2011) Analytic elements method and particle swarm optimization based simulation-optimization model for groundwater management. J Hydrol 402(3–4):217–227
Giambastiani BMS, Antonellini M, Essink GHPO, Stuurman RJ (2007) Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J Hydrol 340(1–2):91–104
Gordon E, Shamir U, Bensabat J (2000) Optimal management of a regional aquifer under salinization conditions. Water Resour Res 36(11):3193–3203
Gorelick SM, Voss CI, Gill PE, Murray W, Saunders MA, Wright MH (1984) Aquifer reclamation design: the use of contaminant transport simulation combined with non-linear programming. Water Resour Res 20(4):415–427
Guvanasen V, Wade SC, Barcelo MD (2000) Simulation of regional ground water flow and salt water intrusion in Hernando County, Florida. Ground Water 38(5):772–783
Kallergis G, Lambrakis N, Voudouris K, Kokkalas S (2000) Hydrogeological investigation of the municipality of Malia area. University of Patras, Patras, Greece
Karterakis SM, Karatzas GP, Nikolos IK, Papadopoulou MP (2007) Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J Hydrol 342(3–4):270–282
Kopsiaftis G, Mantoglou A, Giannoulopoulos P (2009) Variable density coastal aquifer models with application to an aquifer on Thira Island. Desalination 237(1–3):65–80
Koukadaki MA, Karatzas GP, Papadopoulou MP, Vafidis A (2007) Identification of the saline zone in a coastal aquifer using electrical tomography data and simulation. Water Resour Manag 21(11):1881–1898
Kourakos G, Mantoglou A (2009) Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Adv Water Resour 32(4):507–521
Kourakos G, Mantoglou A (2011) Simulation and Multi-Objective Management of Coastal Aquifers in Semi-Arid Regions. Water Resour Manage 25:1063–1074
Llopis-Albert C, Pulido-Velazquez D (2014) Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers. Hydrol Process 28(10):3642–3654
Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 39(12)
Mantoglou A, Papantoniou M (2008) Optimal design of pumping networks in coastal aquifers using sharp interface models. J Hydrol 361:52–63
Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297(1–4):209–228
Matott LS, Rabideau AJ, Craig JR (2006) Pump-and-treat optimization using analytic element method flow models. Adv Water Resour 29(5):760–775
Milnes E, Renard P (2004) The problem of salt recycling and seawater intrusion in coastal irrigated plains: an example from the Kiti aquifer (southern Cyprus). J Hydrol 288(3–4):327–343
Papadopoulou MP, Nikolos IK, Karatzas GP (2010a) Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion. Water Sci Technol 62(7):1479–1490
Papadopoulou MP, Varouchakis EA, Karatzas GP (2010b) Terrain discontinuity effects in the regional flow of a complex karstified aquifer. Environ Model Assess 15(5):319–328
Pinder GF, Cooper HH (1970) A numerical technique for calculating transient position of saltwater front. Water Resour Res 6(3):875–882
Reilly TE, Goodman AS (1985) Quantitative-analysis of saltwater–freshwater relationships in groundwater systems: a historical perspective. J Hydrol 80(1–2):125–160
Reilly TE, Goodman AS (1987) Analysis of saltwater upconing beneath a pumping well. J Hydrol 89(3–4):169–204
Reinelt P (2005) Seawater intrusion policy analysis with a numerical spatially heterogeneous dynamic optimization model. Water Resour Res 41(5):1–12 W05006
Shamir U, Bear J, Gamliel A (1984) Optimal annual operation of a coastal aquifer. Water Resour Res 20:435–444
Tian N, Sun J, Xu WB, Lai CH (2011) An improved quantum-behaved particle swarm optimization with perturbation operator and its application in estimating groundwater contaminant source. Inverse Probl Sci Eng 19(2):181–202
Uddameri V, Kuchanur ZM (2007) Simulation-optimization approach to assess groundwater availability in Refugio County, TX. Environ Geol 51:921–929
Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry A (2013) Seawater intrusion processes, investigation, and management: recent advances and future challenges. Adv Water Resour 51:3–26
Willis R, Finney BA (1988) Planning model for optimal control of saltwater intrusion. J Water Res Plan Manag 114(2):163–178
Acknowledgements
The authors would like to thank the guest editor and the anonymous reviewers for their constructive suggestions which improved the original manuscript significantly.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the theme issue “Optimization for Groundwater Characterization and Management”
Rights and permissions
About this article
Cite this article
Karatzas, G.P., Dokou, Z. Optimal management of saltwater intrusion in the coastal aquifer of Malia, Crete (Greece), using particle swarm optimization. Hydrogeol J 23, 1181–1194 (2015). https://doi.org/10.1007/s10040-015-1286-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-015-1286-6