Advertisement

Hydrogeology Journal

, Volume 23, Issue 7, pp 1481–1498 | Cite as

The application of a groundwater/surface-water model to test the vulnerability of Bracciano Lake (near Rome, Italy) to climatic and water-use stresses

Report

Abstract

Modelling tools are necessary for quantitative assessment of groundwater-dependent systems such as interacting groundwater aquifers and lakes. Numerical groundwater models supplemented by stream and lake submodels are the best available tools for testing the conceptual relation of surface water to groundwater, for identifying gaps in the amount and quality of data, and for better understanding the sustainability of a groundwater-lake system in the presence of stresses. Models are of particular interest when applied to an infrequently studied geological context that is subject to specific vulnerabilities and patterns of interaction. Volcanic lakes are one setting where flow models serve to extend current conceptual and practical understanding. In this study, a groundwater/surface-water flow model is presented for the flow-through Bracciano deep caldera lake located near Rome, Italy. The steady-state model quantifies and tests the existing conceptual understanding of the system by taking account of all sources and sinks, and by calibration of key parameters to head and flow data. A transient version of the model demonstrates the response of the system to dry and wet years and to anthropogenic stresses. Although precipitation is the dominant source of water overall for the lake, a major finding of this study is that the groundwater inflow to the lake can buffer fluctuations in lake-water level and reduce lake-level declines, especially during shorter periods of dry conditions.

Keywords

Groundwater flow Conceptual models Numerical modelling Groundwater-lake interaction Italy 

Utilisation d’un modèle eau souterraine/eau de surface pour tester la vulnérabilité du lac Bracciano (près de Rome, Italie) à la pression climatique et d’usage de l’eau

Résumé

Les outils de modélisation sont nécessaires à l’estimation quantitative des systèmes dépendant des eaux souterraines comme les interactions entre les aquifères et les lacs. Les modèles hydrogéologiques numériques complétés par des sous-modèles de rivière et lac sont les meilleurs outils disponibles pour tester les relations conceptuelles entre l’eau de surface et l’eau souterraine, pour identifier les manques en termes de quantité et de qualité des données, ainsi que pour mieux comprendre la durabilité du système eau souterraine-lac en présence de pressions. Les modèles sont d’intérêt particulier lorsqu’ils sont appliqués dans un contexte géologique peu étudié et soumis à des vulnérabilités spécifiques et des schémas d’interaction. Les lacs volcaniques sont un des cas pour lesquels les modèles d’écoulement servent à améliorer les modèles conceptuels prédéfinis et la compréhension du système. Dans cette étude, un modèle d’écoulement eau souterraine/eau de surface est présenté pour les flux d’eau de la caldera profonde du lac Bracciano localisée près de Rome en Italie. Le modèle en régime permanent quantifie et teste la compréhension conceptuelle actuelle du système en prenant en compte toutes les sources et pertes et en calibrant les paramètres clefs des données de charge hydraulique et d’écoulement. Une version en mode transitoire du modèle démontre la réponse du système aux années sèches et humides ainsi qu’aux pressions anthropiques. Bien que les précipitations soient les sources dominantes d’eau pour le lac, un apport majeur de l’étude a été de montrer que les apports d’eau souterraine au lac permettent de tamponner les fluctuations du niveau d’eau du lac et réduire la baisse du niveau du lac, spécialement durant de courtes périodes de sècheresse.

Aplicación de un modelo agua subterránea/agua superficial para testear la vulnerabilidad del lago Bracciano (cerca de Roma, Italia) a estreses climáticos y del uso del agua

Resumen

Las herramientas de modelado son necesarias para la evaluación cuantitativa de los sistemas dependientes de las aguas subterráneas tales como la interacción de acuíferos y lagos. Los modelos numéricos de agua subterránea suplementados por submodelos de corrientes y lagos son las mejores herramientas disponibles para el testeo de la relación conceptual entre agua superficial y agua subterránea, para la identificación de los vacíos en la cantidad y calidad de los datos, y para mejorar el entendimiento de la sustentabilidad de un sistema agua subterránea–lago en la presencia de estreses. Los modelos son de particular interés cuando aplicados a un contexto geológico estudiado en forma poco frecuente es sujeto a vulnerabilidades específicas y esquemas de interacción. Los lagos volcánicos son un escenario donde los modelos de flujo sirven para extender el actual conocimiento conceptual y práctico. En este estudio se presenta un modelo de flujo de agua subterránea/agua superficial para el flujo a través del lago profundo de la caldera de Bracciano cercano a Roma, Italia. El modelo en estado estacionario cuantifica y evalúa el entendimiento conceptual existente del sistema, teniendo en cuenta todas las fuentes y sumideros, y mediante la calibración de los parámetros claves de la carga hidráulica y datos de flujo. Una versión transitoria del modelo demuestra la respuesta del sistema para años secos y húmedos y para los estreses antropogénicos. Aunque la precipitación en general es la principal fuente de agua para el lago, un hallazgo importante de este estudio es que la entrada de las aguas subterráneas al lago puede amortiguar las fluctuaciones en el nivel de agua del lago y reducir la disminución del nivel del lago, especialmente durante períodos más cortos de las condiciones secas.

应用地下水/地表水模型测试 (意大利罗马附近) Bracciano湖脆弱性

摘要

模拟工具对定量评价依赖于地下水的系统诸如相互作用的地下水含水层和湖泊必不可少。由河流和湖泊二级模型构成的数值地下水模型是现有检查地表水和地下水概念关系的最好工具, 用以确定资料数量和质量的空白, 更好地了解地下水系统在有压力情况下的可持续性。模型在用于研究极少的、呈现特定的脆弱性和相互作用模式的地质背景时, 具有特殊的意义。在火山湖背景下, 水流模型对扩展目前概念和实践认识非常有用。在此项研究中, 展示了一个地下水/地表水模型, 这个模型用于穿过意大利罗马附近Bracciano深火山口湖的水流。稳态模型考虑到了所有的源与汇, 通过校准水头和水流资料的关键参数, 量化和测试了系统现有的概念认识。模型的瞬时变型展示了系统对干旱和湿润年份的响应及对人类活动影响的响应。尽管降水是湖泊的主要水源, 但研究的主要发现是, 地下水流入到湖泊可缓冲湖泊水位的波动, 特别是在较短的干旱条件时期内减少湖泊水位的下降。

Aplicação de um modelo de águas subterrâneas/superficiais para testar a vulnerabilidade do Lago Bracciano (perto de Roma, Itália) a estresses climáticos e de uso de água

Resumo

Ferramentas de modelagem são necessárias para a avaliação quantitativa dos sistemas dependentes de águas subterrâneas, tais como interações entre aquíferos e lagos. Modelos numéricos de águas subterrâneas complementados por submodelos de fluxo e lago são as melhores ferramentas disponíveis para testar a relação conceitual de águas superficiais para águas subterrâneas, para a identificação de discrepâncias na quantidade e qualidade dos dados, e para uma melhor compreensão da sustentabilidade de um sistema de águas subterrâneas-lago na presença de estresses. Modelos são de particular interesse quando aplicados a um contexto geológico raramente estudado que está sujeito a vulnerabilidades e padrões de interação específicos. Lagos vulcânicos são um ambiente onde modelos de fluxo servem para avançar o entendimento conceitual e prático atual. Neste estudo um modelo de fluxo de águas subterrâneas/superficiais é apresentado para o fluxo através do lago de caldeira vulcânica profunda Bracciano localizado perto de Roma, Itália. O modelo de fluxo permanente quantifica e testa a compreensão conceitual existente do sistema, levando em conta todas as fontes e sumidouros, e pela calibração de parâmetros chave de dados de carga e fluxo. Uma versão transiente do modelo demonstra a resposta do sistema para anos secos e úmidos e a estresses antropogênicos. Embora a precipitação seja a principal fonte de água para lago todo, uma descoberta importante deste estudo é que o fluxo de entrada de água subterrânea no lago pode amortecer as flutuações no nível d’água do lago e reduzir declínios no nível do lago, especialmente durante curtos períodos de condições secas.

Notes

Acknowledgements

Authors are grateful to Daniel Feinstein, USGS Wisconsin Water Science Center, for the constructive discussion on modeling issues and to the GEUS researchers for the support received.

References

  1. Ambrosetti W, Barbarnti L, Sala N (2003) Residence time and physical processes in lakes. J Limnol 62(N1):1–15CrossRefGoogle Scholar
  2. Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, San Diego, California, 381 ppGoogle Scholar
  3. Anderson MP, Hunt RJ, Krohelsky JT, Chung K (2002) Using hydraulic conductivity nodes to simulate seepage lakes. Ground Water 40(2):117–122CrossRefGoogle Scholar
  4. Awulachew SB (2006) Modelling natural conditions and impacts of consumptive water use and sedimentation of Lake Abaya and Lake Chamo, Ethiopia. Lakes Reservoirs Res Manag 11:73–82Google Scholar
  5. Ayenew T, Becht R (2008) Comparative assessment of the water lake balance and hydrology of selected Ethiopian and Kenyan rift lakes. Lakes Reservoirs Res Manag 13:181–196CrossRefGoogle Scholar
  6. Boni C, Bono P, Capelli G (1988) Carta Idrogeologica del Territorio della Regione Lazio (scala 1:250.000) [Hydrogeological map on the territory of the Lazio region (scale 1:250,000)]. Ufficio Parchi e Riserve Naturali - Università degli Studi “La Sapienza”, RomeGoogle Scholar
  7. Camponeschi B, Lombardi L (1968) Idrogeologia dell’area vulcanica Sabatina [Hydrogeology of Sabatini volcanic area]. Mem Soc Geol Ital 8:25–55Google Scholar
  8. Capelli G, Mazza R, Gazzetti C (2005) Strumenti e strategie per la tutela e uso compatibile della risorsa idrica nel Lazio: gli acquiferi vulcanici [Tools and strategies for the compatible use of water resources in the Lazio region: volcanic aquifers]. Pitagora, Bologna, 78 ppGoogle Scholar
  9. Cheng X, Anderson MP (1994) Simulating the influence of lake position on groundwater fluxes. Water Resour Res 30(7):2041–2049CrossRefGoogle Scholar
  10. De Rita D, Funiciello R, Rossi U, Sposato A (1983) Structure and evolution of the Sacrofano-Baccano caldera, Sabatini volcanic complex, Rome. J Volcanol Geotherm Res 17:219–236Google Scholar
  11. De Rita D, Di Filippo M, Rosa C (1996) Structural evolution of the Bracciano volcano-tectonic depression, Sabatini Volcanic District, Italy. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geological Society, London, Special Publications, 110, pp 225–236Google Scholar
  12. Delpino F (1988) Le acque interne: appunti di archeologia preistorica [Internal waters: notes of prehistoric archaeology]. In: Etruria Meridionale. Atti del Convegno, RomeGoogle Scholar
  13. Demlie M, Ayenew T, Wohnlich S (2007) Comprehensive hydrological and hydrogeological study of topographically closed lakes in highland Ethiopia: the case of Hayq and Ardibo. J Hydrol 339:145–158CrossRefGoogle Scholar
  14. Doherty J (2008a) PEST, model independent parameter estimation: user manual, 5th edn. Watermark, Brisbane, Australia. http://www.pesthomepage.org/Downloads.php. Accessed October 1, 2009
  15. Doherty J (2008b) PEST, Model independent parameter estimation: addendum to user manual, 5th edn. Watermark, Brisbane, Australia. http://www.pesthomepage.org/Downloads.php. Accessed October 1, 2009
  16. Dragoni W, Valigi D (1994) Contributo alla stima dell’evaporazione dalle superfici liquide nell’Italia Centrale [Contribution to the estimation of central Italian liquid surface evaporation]. Geol Romana 30:151–158Google Scholar
  17. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92Google Scholar
  18. Hunt RJ, Haitjema HM, Krohelski JT, Feinstein DT (2003) Simulating ground water–lake interactions. Ground Water 41(2):227–237CrossRefGoogle Scholar
  19. Hunt RJ, Walker JF, Selbig WR, Westenbroek SM, Regan RS (2013) Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin. US Geol Surv Sci Invest Rep 2013–5159, 118 ppGoogle Scholar
  20. Kidmose J, Engesgaard P, Nilsson B, Laier T, Looms MC (2011) Spatial distribution of seepage at a flow-through lake: Lake Hampen, western Denmark. Vadose Zone J 10:110–124CrossRefGoogle Scholar
  21. Lombardi L, Giannotti GP (1969) Idrogeologia della zona a sud-est del lago di Bracciano [Hydrogeology of the south east zone of Bracciano Lake]. Boll Soc Geol Ital 88:107–121Google Scholar
  22. Mattei M, Conticelli S, Giordano G (2010) The Tyrrhenian margin geological setting: from the Apennine orogeny to the K-rich volcanism. In: Funiciello R, Giordano G (eds) The Colli Albani Volcano. Geol Soc Spec Pub IAVCEI 3:7–27Google Scholar
  23. Mazza R, Taviani S, Capelli G, Giordano G, De Benedetti A (2015) Quantitative hydrogeology of volcanic lakes with management, geothermal and geohazard implications. In: Rouwet D et al (eds) Volcanic lakes: advances in volcanology. Springer, Heidelberg, GermanyGoogle Scholar
  24. Merritt ML, Konikow LF (2000) Documentation of a computer program to simulate lake–aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute-transport model. US Geol Surv Water Resour Invest Rep 00–4167Google Scholar
  25. Pasternack GB, Varekamp JC (1997) Volcanic lakes systematics I: physical constrains. Bull Vulcanol 58:528–538CrossRefGoogle Scholar
  26. Rumbaugh JO, Rumbaugh DB (2004) Guide to using groundwater vistas, version 4. Environmental Simulations Inc., Reinholds, PA, 366 ppGoogle Scholar
  27. Sonnenborg TO, Henriksen HJ (2005) Definition of requirements for RMS with specific assessment of uncertainty of observational data, Sobs, Appendix D (in Danish). In: Handbook of groundwater modelling. GEUS report 2005/80, GEUS, CopenhagenGoogle Scholar
  28. Taviani S (2011) Application of the MODFLOW groundwater numerical model to hydrogeological volcanic units. PhD Thesis, Università Roma Tre, Rome, 143 ppGoogle Scholar
  29. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow system. Hydrogeol J 7:28–45CrossRefGoogle Scholar
  30. Yihdego Y, Becht R (2013) Simulation of lake–aquifer interaction at Lake Naivasha, Kenya using a three-dimensional flow model with the high conductivity technique and a DEM with bathymetry. J Hydrol 503:111–122CrossRefGoogle Scholar
  31. Yihdego Y, Webb J (2012) Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia. J Environ Manag 112:149–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dipartimento di ScienzeUniversità di Roma TRERomeItaly
  2. 2.Geological Survey of Denmark and Greenland (GEUS)CopenhagenDenmark

Personalised recommendations