Skip to main content

Advertisement

Log in

Review: Computer-based models for managing the water-resource problems of irrigated agriculture

Revue: Modèles informatiques pour la gestion des problèmes de ressources en eau de l’agriculture irriguée

Revisión: Modelos basados en computadoras para el manejo de problemas del recurso agua en la agricultura bajo riego

评论:基于计算机的管理灌溉农业水资源问题的模型

Revisão: Modelos informatizados para gestão de problemas de recursos hídricos da agricultura irrigada

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

Résumé

L’irrigation est essentielle pour assurer la sécurité alimentaire de la population mondiale en plein essor mais un développement non planifié et non judicieux des zones irriguées provoque des problèmes de colmatage et de salinisation. Dans ce contexte, la gestion des ressources en eaux souterraines est une question cruciale pour satisfaire la demande croissante en eau à des fins agricoles, industrielles et domestiques. Diverses approches de simulation et d’optimisation ont été utilisées pour résoudre les problèmes de gestion des eaux souterraines. Cet article présente une revue des applications simples et combinées des modèles de simulation et d’optimisation pour la gestion des problèmes de ressources en eaux souterraines associés à une agriculture irriguée. L'étude a révélé que l'utilisation combinée de la modélisation de simulation et d'optimisation est très appropriée pour parvenir à une solution optimale pour les problèmes de ressources souterraines, même avec un grand nombre de variables. Des outils de modèle indépendant ont été utilisés pour résoudre les problèmes d’analyse d’incertitude et d’estimation des paramètres dans les études de modélisations des eaux souterraines. Les réseaux de neurones artificiels ont été utilisés pour minimiser le problème de la complexité de calcul. L’incorporation des questions socio-économiques dans les modèles de gestion des eaux souterraines serait un développement important dans les études futures.

Resumen

El riego es fundamental para alcanzar la seguridad alimentaria de una población mundial en crecimiento, pero la expansión no planificada y poco juiciosa de las zonas de riego causa problemas de anegamiento y salinización. Bajo este contexto, la gestión de los recursos hídricos subterráneos es un tema crítico para cumplir con la creciente demanda de agua para usos agrícolas, industriales y domésticos. Se utilizaron diversos enfoques de simulación y de optimización para resolver los problemas de gestión de las aguas subterráneas. Este artículo presenta una revisión de las aplicaciones individuales y combinadas de modelado de simulación y de optimización para la gestión de los problemas de los recursos de las aguas subterráneas asociados con la agricultura bajo riego. El estudio reveló que el uso combinado de modelos de simulación y de optimización es muy adecuado para el logro de una solución óptima para los problemas de los recursos hídricos subterráneos, incluso con un gran número de variables. Se utilizaron herramientas independientes del modelo para resolver los problemas de análisis de incertidumbre y la estimación de parámetros en los estudios de modelización de las aguas subterráneas. Las redes neuronales artificiales se utilizan para minimizar el problema de la complejidad computacional. La incorporación de los aspectos socioeconómicos en el modelado de la gestión de las aguas subterráneas sería un importante desarrollo en los futuros estudios.

摘要

面对世界人口的迅速增长,灌溉对于实现粮食安全必不可少,然而,灌溉区无计划的和草率的扩张导致了水涝和盐碱化问题。在此背景下,地下水资源管理是实现和增加农业、工业和家庭用水需求的重要一环。使用了各种模拟和最优化方法解决地下水管理问题。本文论述了与灌溉农业有关的地下水资源问题管理单个和组合的模拟应用和最优化模拟。研究揭示,模拟-最优化模拟的联合应用对于实现地下水资源问题的最优化解决非常适合,即使这些问题具有大量的变量。利用独立的模型工具解决地下水模拟研究中不确定分析问题和参数估算问题。采用人工神经网络使计算复杂性的问题减少到最小。把社会经济方面等因素纳入到地下水管理模拟中将是未来研究中的重点。

Resumo

A irrigação é essencial para alcançar a segurança alimentar para a população global crescente, mas a expansão não planejada e imprudente de áreas irrigadas causa problemas de encharcamento e salinização. Sob esse pano de fundo, o gerenciamento de recursos hídricos subterrâneos é uma questão crítica para a satisfação da crescente demanda de água para usos agrícolas, industriais e domésticos. Várias abordagens de simulação e otimização foram usadas para resolver os problemas de gestão das águas subterrâneas. Este trabalho apresenta uma revisão das aplicações individuais e combinadas de modelagem de simulação e otimização para a gestão de problemas de recursos hídricos subterrâneos associados com a agricultura irrigada. O estudo revelou que o uso combinado de modelagem de simulação-otimização é muito adequado para alcançar uma solução ideal para os problemas de recursos hídricos subterrâneos, mesmo com um grande número de variáveis. Ferramentas de modelagem independentes foram usadas para resolver os problemas de análise de incerteza e de estimação de parâmetros em estudos de modelagem de águas subterrâneas. Redes neurais artificiais foram usadas para minimizar o problema da complexidade computacional. A incorporação de aspectos socioeconômicos para a modelagem da gestão de águas subterrâneas seria um desenvolvimento importante em estudos futuros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afshar A, Marino MA (1989) Optimization models for waste water reuse in irrigation. J Irrig Drain ASCE 115(2):185–203

    Google Scholar 

  • Afzal J, David HN, Weatherhead EK (1992) Optimization model for alternative use of different quality irrigation water. J Irrig Drain Eng ASCE 118(2):218–228

    Google Scholar 

  • Ahlfeld DP, Heidari M (1994) Applications of optimal hydraulic control to groundwater systems. J Water Resour Plan Manag ASCE 120:350–365

    Google Scholar 

  • Ahlfeld DP, Muivey JM, Pinder GF (1986) Designing optimal strategies for contaminated groundwater remediation. Adv Water Resour 9(2):77–84

    Google Scholar 

  • Ahlfeld DP, Mulvey JM, Pinder GF, Wood EF (1988) Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 1: model development. Water Resour Res 24:431–441

    Google Scholar 

  • Akram S, Kashkouli HA, Pazira E (2009) Sensitive variables controlling salinity and water table in a bio-drainage system. Irrig Drain Syst 22:271–285

    Google Scholar 

  • Alam MM, Bhutta MN (2004) Comparative evaluation of canal seepage investigation techniques. Agric Water Manag 66(1):65–76

    Google Scholar 

  • Alvarez-Rogel J, Hernandez J, Ortiz Silla R, Alcaraz F (1997) Patterns of spatial and temporal variations in soil salinity: example of a salt marsh in a semiarid climate. Arid Soil Res Rehabil 11(4):315–329

    Google Scholar 

  • Anchal V, Gupta SK, Mishra KL, Singh A (2002) Application of a groundwater model to assess land degradation problems. In: proceedings of “Commonwealth Geographical Bureau, Food Security Workshop and International Symposium on Land Degradation”, 7–11 April 2002, Ghaziabad, India, pp 231–238

  • Askri B, Bouhlila R, Job JO (2010) Development and application of a conceptual hydrologic model to predict soil salinity within modern Tunisian oases. J Hydrol 380:45–61

    Google Scholar 

  • Ayvaz MT, Karahan H (2008) A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates. J Hydrol 357:76–92

    Google Scholar 

  • Azaiez MN, Hariga M, Al-Harkan I (2005) A chance-constrained multi-period model for a special multi-reservoir system. Comput Oper Res 32(5):1337–1351

    Google Scholar 

  • Azamathulla MH, Wu FC, Ghani AA, Narulkar SM, Zakaria NA, Chang CK (2008) Comparison between genetic algorithm and linear programming approach for real time operation. J Hydro Environ Res 2:172–181

    Google Scholar 

  • Bahceci D, Dinc N, Tari AF, Agar AI, Sonmez B (2006) Water and salt balance studies using SALTMOD to improve subsurface drainage design in the Konya-Cumra Plain, Turkey. Agric Water Manag 85:261–271

    Google Scholar 

  • Barlow PM, Wagner BJ, Belitz K (1996) Pumping strategies for management of a shallow water table: the value of the simulation-optimization approach. Ground Water 34(2):305–317

    Google Scholar 

  • Barrett-Lennard E (2002) Restoration of saline land through revegetation. Agric Water Manag 53:13–26

    Google Scholar 

  • Basagaoglu H, Marino MA (1999) Joint management of surface and ground water supplies. Ground Water 37(2):214–222

    Google Scholar 

  • Bastiaanssen WGM, Allen RG, Droogers P, D’Urso G, Steduto P (2007) Twenty five years modeling irrigated and drained soils: state of the art. Agric Water Manag 92:111–125

    Google Scholar 

  • Belaineh G, Peralta RC, Hughes TC (1999) Simulation/optimization modelling for water resources management. J Water Resour Plan Manag ASC 125(3):154–161

    Google Scholar 

  • Belmans C, Wesseling JG, Feddes RA (1983) Simulation model of the water balance for the cropped soil: SWATRE. J Hydrol 63:271–286

    Google Scholar 

  • Bender DA, Peart RM, Doster DH, Barrett JR, Bagby MO (1984) Energy crop evaluation by linear programming. Energy Agric 3:199–210

    Google Scholar 

  • Bhattacharjya RK, Datta B (2005) Optimal management of coastal aquifer using linked simulation optimization approach. Water Resour Manag 19:295–320

    Google Scholar 

  • Boels D, Smit AAMFR, Jhorar RK, Kumar R, Singh J (1996) Analysis of water management in Sirsa District in Haryana: model testing and application. Report 115, DLO-Winand Staring, now Alterra, Wageningen, The Netherlands, 50 pp

    Google Scholar 

  • Boling AA, Bouman BAM, Tuong TP, Murty MVR, Jatmiko SY (2007) Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in central Java, Indonesia. Agric Syst 92:115–139

    Google Scholar 

  • Boonstra J (1999) Use of simulation models for groundwater management in arid and semi-arid regions. In: Proceedings of “Salinity Management in Agriculture”, 2–5 December 1998, Central Soil Salinity Research Institute, Karnal, India, pp 197–205

  • Boonstra J, Bhutta MN (1996) Groundwater recharge in irrigated agriculture: the theory and practice of inverse modeling. J Hydrol 174:357–374

    Google Scholar 

  • Boumans JH, van Hoorn JW, Kruseman GP, Tanwar BS (1988) Water table control, reuse and disposal of drainage water in Haryana. Agric Water Manag 14:537–545

    Google Scholar 

  • Brahmabhatt VS, Dalwadi GB, Chhabra SB, Ray SS, Dadhwal VK (2000) Land use/land cover change mapping in Mahi canal command area, Gujarat, using multitemporal satellite data. J Indian Soc Remote Sens 28(4):221–232

    Google Scholar 

  • Bresler E (1973) Simultaneous transport of solutes and water under transient unsaturated flow conditions. Water Resour Res 9(4):975–986

    Google Scholar 

  • Burt OR (1970) Groundwater storage control under institutional restrictions. Water Resour Res 66:1540–1548

    Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity. Appl Geochem 19:1233–1254

    Google Scholar 

  • Castle EN, Lindeborg KH (1960) The economics of groundwater allocation: a case study. J Farm Econ 42:150–160

    Google Scholar 

  • Castrignano A, Lopez G, Stelluti M (1994) Temporal and spatial variability of electrical conductivity, Na content and sodium adsorption ratio of soil saturation measurements. Eur J Agron 3(3):221–226

    Google Scholar 

  • Chandio AS, Lee TS, Mirjat MS (2012) The extent of waterlogging in the lower Indus Basin (Pakistan): a modeling study of groundwater levels. J Hydrol 426–427:103–111

    Google Scholar 

  • Chandio AS, Lee TS, Mirjat MS (2013) Simulation of horizontal and vertical drainage systems to combat waterlogging problems along the Rohri Canal in Khairpur District, Pakistan. J Irrig Drain Eng ASCE 139(9):710–717

    Google Scholar 

  • Chavez-Morales J, Marino MA, Holzapfel EA (1987) Planning model of irrigation district. J Irrig Drain Eng ASCE 113:549–564

    Google Scholar 

  • Cheng AHD, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater-intruded coastal aquifers. Water Resour Res 36(8):2155–2165

    Google Scholar 

  • Chowdary VM, Chandran RV, Neeti N, Bothale RV, Srivastava YK, Ingle P, Ramakrishnan D, Dutta D, Jeyaram A, Sharma JR, Singh R (2008) Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric Water Manag 95:754–766

    Google Scholar 

  • D’Urso G, Menenti M, Santini A (1999) Regional application of one-dimensional water flow models for irrigation management. Agric Water Manag 40:291–302

    Google Scholar 

  • Dai T, Labadie JW (2001) River basin network model for integrated water quantity/quality management. J Water Resour Plan Manag ASCE 127:295–305

    Google Scholar 

  • Danskin WR, Gorelick SM (1985) A policy evaluation tool: management of a multiaquifer system using controlled stream recharge. Water Resour Res 21(11):1731–1747

    Google Scholar 

  • Das A, Datta B (1999) Development of management models for sustainable use of coastal aquifers. J Irrig Eng ASCE 125(3):112–121

    Google Scholar 

  • Das A, Datta B (2001) Application of optimisation techniques in groundwater quantity and quality management. Sadhana 26(4):293–316

    Google Scholar 

  • Das B, Singh A, Panda SN, Yasuda H (2015) Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy 42:527–537

    Google Scholar 

  • Datta B, Dhiman SD (1996) Chance-constrained optimal monitoring network design for pollutants in ground water. J Water Resour Plan Manag ASCE 122(3):180–188

    Google Scholar 

  • Dinka MO (2010) Analyzing the extents of Basaka Lake expansion and soil and water quality status of Matahara Irrigation Scheme, Awash Basin (Ethiopia). PhD Thesis, BOKU University, Vienna, Austria

  • Dougherty DE, Marryott RA (1991) Optimal groundwater management. 1: simulated annealing. Water Resour Res 27(10):2493–2508

    Google Scholar 

  • Droogers P, Bastiaanssen WGM, Beyazgul M, Kayam Y, Kite GW, Murray-Rust H (2000) Distributed agrohydrological modeling of an irrigation system in western Turkey. Agric Water Manag 43:183–202

    Google Scholar 

  • Easwaramoorthy K, Govindawamy R, Singh I (1989) Integrated use of water resources in the lower Bhawani project in India. Int J Water Res Dev 55(4):274–286

    Google Scholar 

  • Ejaz MS, Peralta RC (1995) Maximizing conjunctive use of surface and ground water under surface water quality constraints. Adv Water Resour 18(2):61–75

    Google Scholar 

  • Emch PG, Yeh WG (1998) Management model for conjunctive use of coastal surface water and groundwater. J Water Resour Plan Manag ASCE 124(3):129–139

    Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and drop yield. Wageningen CAD, Wageningen, The Netherlands

  • Feinerman E, Yaron D (1983) Economics of irrigation water mixing within a farm framework. Water Resour Res 19:337–345

    Google Scholar 

  • Garcia LA, Foged N, Cardon GE (2006) Development of GIS-based model to estimate relative reductions in crop yield due to salinity and waterlogging. J Irrig Drain Eng ASCE 132(6):553–563

    Google Scholar 

  • Garg NK, Ali A (1998) Two-level optimization model for lower Indus Basin. Agric Water Manag 36:1–21

    Google Scholar 

  • Garg NK, Ali A (2000) Groundwater management for Lower Indus Basin. Agric Water Manag 42(3):273–290

    Google Scholar 

  • Gates TK, Grismer ME (1989) Irrigation and drainage strategies in salinity affected regions. J Irrig Drain Eng ASCE 115:255–280

    Google Scholar 

  • Gates TK, Wets RJB, Grismer ME (1989) Stochastic approximation applied to optimal irrigation and drainage planning. J Irrig Drain ASCE 115(3):488–502

    Google Scholar 

  • Gaur S, Chahar BR, Graillot D (2011) Analytic elements method and particle swarm optimization based simulation-optimization model for groundwater management. J Hydrol 402:217–227

    Google Scholar 

  • Gorelick SM (1983) A review of distributed parameter groundwater management modelling methods. Water Resour Res 19(2):305–319

    Google Scholar 

  • Gorelick SM (1990) Large-scale nonlinear deterministic and stochastic optimization: formulations involving simulation of subsurface contamination. Math Program 48(1-3):19–39

    Google Scholar 

  • Guganesharajah K, Pavey JF, van Wonderen J, Khasankhanova GM, Lyons DJ, Lloyd BJ (2007) Simulation of processes involved in soil salinization to guide soil remediation. J Irrig Drain Eng ASCE 133:131–139

    Google Scholar 

  • Hallaji K, Yazicigil H (1996) Optimal management of coastal aquifer in southern Turkey. J Water Res Plan Manag ASCE 122(4):233–244

    Google Scholar 

  • Han D, Song X, Currell MJ, Cao G, Zhang Y, Kang Y (2011) A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J Hydrol 405:217–234

    Google Scholar 

  • Haouari M, Azaiez MN (2001) Optimal cropping patterns under water deficits. Eur J Oper Res 130:133–146

    Google Scholar 

  • Haq ZU, Anwar AA, Clarke D (2008) Evaluation of a genetic algorithm for the irrigation scheduling problem. J Irrig Drain Eng ASCE 134(6):737–744

    Google Scholar 

  • Hillel D (2000) Salinity management for sustainable irrigation: integrating science, environment, and economics. World Bank, Washington, DC

    Google Scholar 

  • Hodgson GA, Bartle GA, Silberstein RP, Hatton TJ, Ward BH (2002) Measuring and monitoring the effects of agroforestry and drainage in the ‘Ucarro’ sub-catchment. Agric Water Manag 53:39–56

    Google Scholar 

  • Holland JH (1975) Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Hollanders P, Schultz B, Shaoli W, Lingen C (2005) Drainage and salinity assessment in the Huinong Canal Irrigation District, Ningxia, China. Irrig Drain 54:155–173

    Google Scholar 

  • Huang Y, Li YP, Chen X, Ma YG (2012) Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China. Agric Water Manag 107:74–85

    Google Scholar 

  • Ibanez-Castillo LA, Chavez-Morales J, Marino MA (1997) A planning model for the Fuerte-Carrizo irrigation system, Mexico. Water Resour Manag 11(3):165–183

    Google Scholar 

  • Ibrakhimov M, Martius C, Lamers JPA, Tischbein B (2011) The dynamics of groundwater table and salinity over 17 years in Khorezm. Agric Water Manag 101:52–61

    Google Scholar 

  • Ji X-B, Kang E-S, Chen R-S, Zhao W-Z, Zhang Z-H, Jin B-W (2007) A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied. Agric Water Manag 87:337–346

    Google Scholar 

  • Jones L, Willis R, Yeh WW-G (1987) Optimal control of nonlinear groundwater hydraulics using differential dynamic programming. Water Resour Res 23(11):2097–2106

    Google Scholar 

  • Karamouz M, Kerachian R, Zahraie B (2004) Monthly water resources and irrigation planning: case study of conjunctive use of surface and groundwater resources. J Irrig Eng ASCE 130(5):391–402

    Google Scholar 

  • Karamouz M, Ahmadi A, Nazif S (2009) Development of management schemes in irrigation planning: economic and crop pattern consideration. Trans Civil Eng 16(6):457–466

    Google Scholar 

  • Karatzas GP, Pinder GF (1993) Groundwater management using numerical simulation and the outer approximation method for global optimisation. Water Resour Res 29:3371–3378

    Google Scholar 

  • Karterakis SM, Karatzas GP, Nikolos IK, Papadopoulou MP (2007) Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J Hydrol 342(3-4):270–282

    Google Scholar 

  • Katsifarakis KL, Petala Z (2006) Combining genetic algorithms and boundary elements to optimize coastal aquifers’ management. J Hydrol 327:200–207

    Google Scholar 

  • Keshari AK, Datta B (1996) Multiobjective management of a contaminated aquifer for agricultural use. Water Resour Manag 10:373–395

    Google Scholar 

  • Khare D, Jat MK, Ediwahyunan (2006) Assessment of conjunctive use planning options: a case study of Sapon irrigation command area of Indonesia. J Hydrol 328:764–777

    Google Scholar 

  • Khare D, Jat MK, Sunder JD (2007) Assessment of water resources allocation options: conjunctive use planning in a link canal command. Resour Conserv Recycl 51(2):487–506

    Google Scholar 

  • Khepar SD, Chaturvedi MC (1982) Optimum cropping and groundwater management. J Am Water Resour Assoc 18(4):655–660

    Google Scholar 

  • Khouri N (1998) Potential of dry-drainage for controlling soil salinity. Can J Civil Eng 25:195–205

    Google Scholar 

  • Kirchner J, Moolman JH, du Plessis HM, Reynders AG (1997) Causes and management of salinity in the Breede River Valley, South Africa. Hydrogeol J 5:98–108

    Google Scholar 

  • Kitamura Y, Yano T, Honna T, Yamamoto S, Inosako K (2006) Causes of farmland salinization and remedial measures in the Aral Sea basin-research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric Water Manag 85:1–14

    Google Scholar 

  • Konikow LF, Bredehoeft JD (1992) Ground water models cannot be validated. Adv Water Resour 15:75–83

    Google Scholar 

  • Konukcu F, Gowing JW, Rose DA (2006) Dry drainage: a sustainable solution to waterlogging and salinity problems in irrigation areas. Agric Water Manag 83:1–12

    Google Scholar 

  • Kovda VA (1973) Landscapes in relation to irrigation, drainage and salinity. In: Irrigation, drainage and salinity: an international source book, Unesco/FAO, Paris

  • Kumar R, Pathak SK (1989) Optimal crop planning for a region in India by conjunctive use of surface and groundwater. Int J Water Resour Dev 5:99–105

    Google Scholar 

  • Kumar R, Singh J (2003) Regional water management modeling for decision support in irrigated agriculture. J Irrig Drain Eng ASCE 129:432–439

    Google Scholar 

  • Kumar P, Gupta SK, Shukla KN (1996) Water and salt balance analysis: a hydro-salinity model. In: Proc. Scientific Meeting on Waterlogging and Soil Salinity in Ukai-Kakrapar Command: Causes and Remedial Measures, Anand, India, January 1996

  • Latif M, James LD (1991) Conjunctive use to control water logging and salinization. J Water Resour Plan Manag ASCE 117:611–628

    Google Scholar 

  • Lee S, Kitanidis PK (1991) Optimal estimation and scheduling in aquifer remediation with incomplete information. Water Resour Res 27:2203–2217

    Google Scholar 

  • Lefkoff LJ, Gorelick SM (1986) Design and cost analysis of rapid aquifer restoration systems using flow simulation and quadratic programming. Ground Water 24:777–790

    Google Scholar 

  • Li HT, Kinzelbach W, Brunner P, Li WP, Dong XG (2008) Topography representation methods for improving evaporation simulation in groundwater modelling. J Hydrol 356:199–208

    Google Scholar 

  • Li YP, Huang GH, Nie SL, Chen X (2011) A robust modeling approach for regional water management under multiple uncertainties. Agric Water Manag 98:1577–1588

    Google Scholar 

  • Liu J, Zheng C, Zheng L, Lei Y (2008) Ground water sustainability, methodology and application to the North China Plain. Ground Water 466:897–909

    Google Scholar 

  • Loucks DP, Stedginger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Lu H, Huang G, He L (2011) An inexact rough-interval fuzzy linear programming method for generating conjunctive water-allocation strategies to agricultural irrigation systems. Appl Math Model 35(9):4330–4340

    Google Scholar 

  • Lu HW, Huang GH, He L (2012) Simulation-based inexact rough-interval programming for agricultural irrigation management: a case study in the Yongxin County, China. Water Resour Manag 26:4163–4182

    Google Scholar 

  • Maanjhu SK, Kumar JA (2012) Groundwater simulation studies of parts of western Yamuna Canal Command Area, Haryana for planning sustainable development. J Geol Soc India 80:539–545

    Google Scholar 

  • Maddock T III (1972) Algebraic technological functions from a simulation model. Water Resour Res 8(1):129–134

    Google Scholar 

  • Maddock T III (1974) The operation of a stream-aquifer system under stochastic demands. Water Resour Res 10(1):1–10

    Google Scholar 

  • Maji CC, Heady EO (1978) Inter temporal allocation of irrigation water in the Mayurakshi Project (India): an application of chance constrained linear programming. Water Resour Res 14(2):190–196

    Google Scholar 

  • Maknoon R, Burges SJ (1978) Conjunctive use of ground and surface water. J Am Water Works Assoc 70(8):419–424

    Google Scholar 

  • Malek-Mohammadi E (1998) Irrigation planning: integrated approach. J Water Resour Plan Manag ASCE 124(5):272–279

    Google Scholar 

  • Manguerra HB, Garcia LA (1995) Irrigation-drainage design and management model: validation and application. J Irrig Drain Eng ASCE 121(1):83–94

    Google Scholar 

  • Manjunatha MV, Oosterbaan RJ, Gupta SK, Rajkumar H, Jansen H (2004) Performance of subsurface drains for reclaiming waterlogged saline lands under rolling topography in Tungabhadra irrigation project in India. Agric Water Manag 69:69–82

    Google Scholar 

  • Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of salt water intrusion. Water Resour Res 39(12):1–12

    Google Scholar 

  • Mantoglou A, Papantoniou M (2008) Optimal design of pumping networks in coastal aquifers using sharp interface models. J Hydrol 361:52–63

    Google Scholar 

  • Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297:209–228

    Google Scholar 

  • Maskey S, Jonoski A, Solomatine DP (2002) Ground water remediation strategy using global optimization algorithms. J Water Resour Plan Manag ASCE 128(6):431–439

    Google Scholar 

  • McFarlane DJ, Williamson DR (2002) An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’ experimental catchment. Agric Water Manag 53:5–29

    Google Scholar 

  • McKinney DC, Lin MD (1994) Genetic algorithm solution of groundwater management models. Water Resour Res 304:1897–1906

    Google Scholar 

  • McPhee J, Yeh WW-G (2004) Multiobjective optimization for sustainable groundwater management in semiarid regions. J Water Resour Plan Manag ASCE 130(6):490–497

    Google Scholar 

  • Mohan S, Jothiprakash V (2003) Development of priority-based policies for conjunctive use of surface and groundwater. Water Int 28(2):254–267

    Google Scholar 

  • Montazar A, Riazi H, Behbahani SM (2010) Conjunctive water use planning in an irrigation command area. Water Resour Manag 24(3):577–596

    Google Scholar 

  • Morel-Seytoux HJ (1975) A simple case of conjunctive surface–ground-water management. Ground Water 13(6):506–515

    Google Scholar 

  • Morway ED, Gates TK, Niswonger RG (2013) Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system. J Hydrol 495:216–237

    Google Scholar 

  • Nishikawa T (1998) Water resources optimization model for Santa Barbara, California. J Water Resour Plan Manag ASCE 124(5):252–263

    Google Scholar 

  • Nulsen RA (1989) Dryland soil salinity cure, containment or catastrophe. Proceedings of 5th Australian Agronomic Conference, Perth, Australia, September 1989, pp 304–311

  • Onta PR, Gupta AD, Harboe R (1991) Multistep planning model for conjunctive use of surface and groundwater resources. J Water Resour Plan Manag ASCE 117(6):662–678

    Google Scholar 

  • Oosterbaan RJ (2005) SAHYSMOD (version 1.7a). Description of principles, user manual and case studies. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 140 pp

    Google Scholar 

  • Oosterbaan RJ (2008) SaltMod (version 1.0.1.0, November 2008; modified in February 2012). Description of principles, user manual and case studies. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 109 pp

    Google Scholar 

  • Oosterbaan RJ, de Lima IP (1989) SALTMOD manual. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands

    Google Scholar 

  • Oster JD, Wichelns D (2003) Economic and agronomic strategies to achieve sustainable irrigation. Irrig Sci 22:107–120

    Google Scholar 

  • Peck AJ, Hatton T (2003) Salinity and the discharge of salts from catchments in Australia. J Hydrol 272:191–202

    Google Scholar 

  • Peralta RC, Cantiller RRA, Terry JE (1995) Optimal large-scale conjunctive water-use planning: case study. J Water Resour Plan Manag ASCE 121(6):471–478

    Google Scholar 

  • Philbrick RC, Kitanidis PK (1998) Optimal conjunctive-use operations and plans. Water Resour Res 34:1307–1316

    Google Scholar 

  • Psilovikos AA (1999) Optimization models in groundwater management, based on linear and mixed integer programming: an application to a Greek hydrogeological basin. Phys Chem Earth Part B 24(1-2):139–144

    Google Scholar 

  • Qin XS, Huang GH, He L (2009) Simulation and optimization technologies for petroleum waste management and remediation process control. J Environ Manage 90:54–76

    Google Scholar 

  • Quan R-S, Liu M, Zhang L-J, Wang J-J, Xu S-Y (2010) Waterlogging risk assessment based on land use/cover change: a case study in Pudong New Area, Shanghai. Environ Earth Sci 61:1113–1121

    Google Scholar 

  • Rana T, Khan S, Rahimi M (2008) Spatio-temporal optimisation of agricultural drainage using groundwater models and genetic algorithms: an example from the Murray Irrigation Area. Hydrogeol J 166:1145–1157

    Google Scholar 

  • Rao KVGK, Ramesh G, Chauhan HS, Oosterbaan RJ (1992) Salt and water balance studies to evaluate remedial measures for waterlogged saline irrigated soils. ICID & CHD II, Proc. 5th Int. Drainage Workshop, Lahore, Pakistan, February 1992, pp 267–277

  • Rao KVGK, Oosterbaan RJ, Boonstra J (1995) Regional agro-hydro-salinity model. In: Reclamation and management of waterlogged saline soils, National Seminar Proceedings, CSSRI, Karnal and CCSHAU, Hisar, India, April 5–8, 1994, pp 303–311

  • Ritzema HP, Satyanarayana TV, Raman S, Boonstra J (2008) Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: lessons learned in farmers’ fields. Agric Water Manag 95:179–189

    Google Scholar 

  • Rydzewski JR, Rashid HA-H (1981) Optimization of water resources for irrigation in east Jordan. Water Resour Bull 17:367–371

    Google Scholar 

  • Safavi HR, Esmikhani M (2013) Conjunctive use of surface water and groundwater: application of support vector machines (SVMs) and genetic algorithms. Water Resour Manag 27:2623–2644

    Google Scholar 

  • Safavi HR, Darzi F, Mariño MA (2009) Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour Manag 2410:1965–1988

    Google Scholar 

  • Safavi HR, Darzi F, Mariño MA (2010) Simulation-optimization modelling of conjunctive use of surface water and groundwater. Water Resour Manag 24(10):1965–1988

    Google Scholar 

  • Saruwatari N, Yomota A (1995) Forecasting system of irrigation water on paddy field by fuzzy theory. Agric Water Manag 28(2):163–178

    Google Scholar 

  • Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW, Tanji KK, Panday S (2005) Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc Natl Acad Sci USA 102(43):15352

    Google Scholar 

  • Schoups G, Hopmans JW, Tanji KK (2006) Evaluation of model complexity and space-time resolution on the prediction of long-term soil salinity dynamics. Hydrol Process 20:2647–2668

    Google Scholar 

  • Sedki A, Ouazar D (2011) Simulation-optimization modeling for sustainable groundwater development: a Moroccan coastal aquifer case study. Water Resour Manag 25(11):2855–2875

    Google Scholar 

  • Seifi A, Hipel KW (2001) Interior-point method for reservoir operation with stochastic inflows. J Water Resour Plan Manag ASCE 127:48–57

    Google Scholar 

  • Shah T (1988) Externality and equity implications of private exploitation of ground-water resources. Agric Syst 28(2):119–139

    Google Scholar 

  • Shamir U, Bear J, Gamliel A (1984) Optimal annual operation of a coastal aquifer. Water Resour Res 20:435–444

    Google Scholar 

  • Shangguan Z, Shao M, Horton R, Lei T, Qin L, Ma J (2002) A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. Agric Water Manag 52:139–154

    Google Scholar 

  • Sharif M, Wardlaw R (2000) Multireservoir systems optimization using genetic algorithms: case study. J Comput Civil Eng ASCE 14(4):255–263

    Google Scholar 

  • Sharma DP, Tyagi NK (2004) On-farm management of saline drainage water in arid and semi-arid regions. Irrig Drain Syst 53:87–103

    Google Scholar 

  • Shen W-B, Dong D-M, Yu M-Q (2004) Optimal groundwater management model in a two-aquifer system. Pract Period Hazard Toxic Radioact Waste Manag 8(2):119–127

    Google Scholar 

  • Shyam R, Chauhan HS, Sharma JS (1994) Optimal operation scheduling model for a canal system. Agric Water Manag 26:213–225

    Google Scholar 

  • Sinai G, Jain PK (2006) Evaluation of DRAINMOD for predicting water table heights in irrigated fields at the Jordan Valley. Agric Water Manag 79:137–159

    Google Scholar 

  • Singh A (2010) Decision support for on-farm water management and long-term agricultural sustainability in a semi-arid region of India. J Hydrol 391(1-2):63–76

    Google Scholar 

  • Singh A (2011) Estimating long-term regional groundwater recharge for the evaluation of potential solution alternatives to waterlogging and salinisation. J Hydrol 406(3-4):245–255

    Google Scholar 

  • Singh A (2012a) Development and application of a water-table model for the assessment of waterlogging in irrigated semi-arid regions. Water Resour Manag 26(15):4435–4448

    Google Scholar 

  • Singh A (2012b) Validation of SaltMod for a semi-arid part of northwest India and some options for control of waterlogging. Agric Water Manag 115:194–202

    Google Scholar 

  • Singh A (2012c) Optimal allocation of resources for the maximization of net agricultural return. J Irrig Drain Eng ASCE 138(9):830–836

    Google Scholar 

  • Singh A (2012d) An overview of the optimization modelling applications. J Hydrol 466–467:167–182

    Google Scholar 

  • Singh A (2013) Groundwater modelling for the assessment of water management alternatives. J Hydrol 481:220–229

    Google Scholar 

  • Singh A (2014a) Groundwater resources management through the applications of simulation modeling: a review. Sci Total Environ. doi:10.1016/j.scitotenv.2014.05.048

    Google Scholar 

  • Singh A (2014b) Simulation and optimization modeling for the management of groundwater resources, 1: distinct applications. J Irrig Drain Eng ASCE 140(4):04013021

  • Singh A (2014c) Optimization modelling for seawater intrusion management. J Hydrol 508:43–52

    Google Scholar 

  • Singh A (2014d) Irrigation planning and management through optimization modelling. Water Resour Manag 28(1):1–14

    Google Scholar 

  • Singh A (2014e) Optimizing the use of land and water resources for maximizing farm income by mitigating the hydrological imbalances. J Hydrol Eng (ASCE) 19(7):1447–1451

    Google Scholar 

  • Singh A (2014f) Simulation and optimization modeling for the management of groundwater resources. 2: combined applications. J Irrig Drain Eng ASCE 140(4):04014002

  • Singh A (2014g) Simulation-optimization modeling for conjunctive water use management. Agric Water Manag 141:23–29

    Google Scholar 

  • Singh A (2014h) Conjunctive use of water resources for sustainable irrigated agriculture. J Hydrol 519:1688–1697

    Google Scholar 

  • Singh A (2015a) Poor quality water utilization for agricultural production: an environmental perspective. Land Use Policy 43:259–262

    Google Scholar 

  • Singh A (2015b) Land and water management planning for increasing farm income in irrigated dry areas. Land Use Policy 42:244–250

    Google Scholar 

  • Singh A (2015c) Managing the environmental problem of seawater intrusion in coastal aquifers through simulation-optimization modeling. Ecol Indic 48:498–504

    Google Scholar 

  • Singh A, Panda SN (2012a) Integrated salt and water balance modelling for the management of waterlogging and salinization. 1: validation of SAHYSMOD. J Irrig Drain Eng ASCE 138(11):955–963

    Google Scholar 

  • Singh A, Panda SN (2012b) Integrated salt and water balance modelling for the management of waterlogging and salinization, 2: application of SAHYSMOD. J Irrig Drain Eng ASCE 138(11):964–971

    Google Scholar 

  • Singh A, Panda SN (2012c) Development and application of an optimization model for the maximization of net agricultural return. Agric Water Manag 115:267–275

    Google Scholar 

  • Singh A, Panda SN (2013) Optimization and simulation modelling for managing the problems of water resources. Water Resour Manag 27(9):3421–3431

    Google Scholar 

  • Singh R, Singh J (1996) Irrigation planning in cotton through simulating modelling. Irrig Sci 17:31–36

    Google Scholar 

  • Singh A, Krause P, Panda SN, Flugel WA (2010) Rising water table: a threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India. Agric Water Manag 97(10):1443–1451

    Google Scholar 

  • Singh A, Panda SN, Flugel W-A, Krause P (2012) Waterlogging and farmland salinisation: causes and remedial measures in an irrigated semi-arid region of India. Irrig Drain 61(3):357–365

    Google Scholar 

  • Smedema LK (1990) Irrigation performance and waterlogging and salinity. Irrig Drain Syst 4:367–374

    Google Scholar 

  • Smout IK, Gorantiwar SD (2005) Multilevel approach for optimizing land and water resources and irrigation deliveries for tertiary units in large irrigation schemes, I: method. J Irrig Drain Eng ASCE 131:254–263

    Google Scholar 

  • Soderstrom M (1992) Geostatistical modeling of salinity as a basis for irrigation management and crop selection: a case study in central Tunisia. Environ Geol Water Sci 20:85–92

    Google Scholar 

  • Sorooshian S, Gupta VK (1995) Model calibration. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources, Highlands Ranch, CO, pp 23–68

    Google Scholar 

  • Srinivasulu A, Rao CS, Lakshmi GV, Satyanarayana TV, Boonstra J (2004) Model studies on salt and water balances at Konanki Pilot Area, Andhra Pradesh, India. Irrig Drain Syst 18:1–17

    Google Scholar 

  • Srivastav RK, Srinivasan K, Sudheer KP (2011) Simulation-optimization framework for multi-season hybrid stochastic models. J Hydrol 404:209–225

    Google Scholar 

  • Sun Q, Krobel R, Muller T, Romheld V, Cui Z, Zhang F, Chen X (2011) Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agric Water Manag 98:808–814

    Google Scholar 

  • Suryavanshi AR, Reddy JM (1986) Optimal operation schedule of irrigation distribution systems. Agric Water Manag 11:23–30

    Google Scholar 

  • Swamee PK, Mishra GC, Chahar BR (2000) Comprehensive design of minimum cost irrigation canal sections. J Irrig Drain Eng ASCE 126(5):322–327

    Google Scholar 

  • Takahashi S, Peralta RC (1995) Optimal perennial yield planning for complex nonlinear aquifers: methods and examples. Adv Water Resour 18:49–62

    Google Scholar 

  • Thayalakumaran T, Bethune MG, McMahon TA (2007) Achieving a salt balance: should it be a management objective? Agric Water Manag 92:1–12

    Google Scholar 

  • Thiam E-HI, Singh VP (1998) Spatial and temporal variability of salinity in Casamance River Basin, southern Senegal, West Africa. Hydrol Process 12:1095–1110

    Google Scholar 

  • Thokal RT, Gupta SK, Chauhan HS (1996) Spatial variability of salinity in saline soils. Ann Arid Zone 35(1):37–41

    Google Scholar 

  • Ting CS, Zhou Y, de Vries JJ, Simmers I (1998) Development of a preliminary groundwater flow model for water resources management in the Pingtung Plain, Taiwan. Ground Water 36(1):20–36

    Google Scholar 

  • Tracy N (1998) Water resources optimization model for Santa Barbara, California. J Water Resour Plan Manag ASCE 124:252–263

    Google Scholar 

  • Tran LD, Doc L, Schilizzi S, Chalak M, Kingwell R (2011) Optimizing competitive uses of water for irrigation and fisheries. Agric Water Manag 101:42–51

    Google Scholar 

  • Tsakiris G, Kiountouzis E (1984) Optimal intraseasonal irrigation water distribution. Adv Water Resour 7:89–92

    Google Scholar 

  • Tsubo M, Basnayake J, Fukai S, Sihathep V, Siyavong P, Sipaseuth CM (2006) Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in southern Laos. Field Crops Res 97:209–220

    Google Scholar 

  • Tyagi NK (1986) Optimal water management strategies for salinity control. J Irrig Drain Eng ASCE 112:81–87

    Google Scholar 

  • Tyagi NK (1988) Managing salinity through conjunctive use of water resources. Ecol Model 40(1):11–24

    Google Scholar 

  • Tyagi NK, Narayana VVD (1981) Conjunctive use of canals and aquifers in alkali soils of Karnal. J Agric Eng New Delhi, India 18:78–91

    Google Scholar 

  • Tyagi NK, Narayana VVD (1984) Water use planning for alkali soils under reclamation. J Irrig Drain Eng ASCE 110(2):192–207

    Google Scholar 

  • Tyagi NK, Tyagi KC, Pillai NN, Willardson LS (1993) Decision support for irrigation system improvement in saline environment. Agric Water Manag 23:285–301

    Google Scholar 

  • Uddameri V, Kuchanur M (2007) Simulation-optimization approach to assess groundwater availability in Refugio County, TX. Environ Geol 51(6):921–929

    Google Scholar 

  • Upadhyaya A, Chauhan HS (2002) Water table rise in sloping aquifer due to canal seepage and constant recharge. J Irrig Drain Eng ASCE 128:160–167

    Google Scholar 

  • van Genuchten MT (1982) A comparison of numerical solutions of the one-dimensional saturated-unsaturated flow and mass transport equations. Adv Water Resour 5(1):47–55

    Google Scholar 

  • van Walsum PEV, Veldhuizen AA (2011) Integration of models using shared state variables: implementation in the regional hydrologic modelling system SIMGRO. J Hydrol 409(1–2):363–370

    Google Scholar 

  • Vedula S, Kumar DN (1996) An integrated model for optimal reservoir operation for irrigation of multiple crops. Water Resour Res 32(4):1101–1108

    Google Scholar 

  • Vedula S, Roger P (1981) Multiobjective analysis of irrigation planning in river basin development. Water Resour Res 17(5):1304–1310

    Google Scholar 

  • Vedula S, Mujumdar PP, Sekhar GC (2005) Conjunctive use modeling for multicrop irrigation. Agric Water Manag 73(3):193–221

    Google Scholar 

  • Wang M, Zheng C (1998) Ground water management optimization using genetic algorithms and simulated annealing: formulation and comparison. J Am Water Resour Assoc 34:519–530

    Google Scholar 

  • Wang Y, Xiao D, Li Y, Li X (2008) Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang Province, China. Environ Monit Assess 140:291–302

    Google Scholar 

  • Wardlaw R, Barnes J (1999) Optimal allocation of irrigation water supplies in real time. J Irrig Drain Eng ASCE 125:345–354

    Google Scholar 

  • Wardlaw R, Bhaktikul K (2004) Comparison of genetic algorithm and linear programming approaches for lateral canal scheduling. J Irrig Drain Eng ASCE 130(4):311–317

    Google Scholar 

  • Warrick AW, Biggar JW, Nielsen DR (1971) Simultaneous solute and water transfer for an unsaturated soil. Water Resour Res 7:1216–1225

    Google Scholar 

  • Wesseling JG, van den Broek BJ (1988) Prediction of irrigation scheduling with the numerical model SWATRE. Agric Water Manag 14:299–306

    Google Scholar 

  • West DW, Taylor JA (1980) The effect of temperature on salt uptake by tomato plants with diurnal and nocturnal waterlogging of salinized rootzones. Plant Soil 56:113–121

    Google Scholar 

  • Wichelns D (1999) An economic model of waterlogging and salinization in arid regions. Ecol Econ 30:475–491

    Google Scholar 

  • Williams WD (1987) Salinization of rivers and streams: an important environmental hazard. AMBIO 16:180–185

    Google Scholar 

  • Willis R, Finney BA (1988) Planning model for optimal control of saltwater intrusion. J Water Resour Plan Manag ASCE 114(2):163–178

    Google Scholar 

  • Willis R, Yeh WW-G (1987) Ground water system planning and management. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Willis R, Finney BA, Zhang D (1989) Water resources management in North China Plain. J Water Resour Plan Manag ASCE 115(5):598–615

    Google Scholar 

  • Wolde-Kirkos AJ, Chawla AS (1994) Seepage from canal to asymmetric drainage. J Irrig Drain Eng ASCE 120:949–956

    Google Scholar 

  • Wu J, Zheng L, Liu D (2007) Optimizing groundwater development strategies by genetic algorithm: a case study for balancing the needs for agricultural irrigation and environmental protection in northern China. Hydrogeol J 157:1265–1278

    Google Scholar 

  • Xie X, Cui Y (2011) Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice. J Hydrol 396:61–71

    Google Scholar 

  • Xu PZ (1996) Impact of future sea level rise on flood and waterlogging disasters in Lixiahe Region. Chin Geogr Sci 6(1):35–48

    Google Scholar 

  • Xu X, Huang G, Qu Z, Pereira LS (2010) Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric Water Manag 98(2):301–313

    Google Scholar 

  • Xu X, Huang G, Qu Z, Pereira L (2011) Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the upper Yellow River Basin. Water Resour Manag 25:2035–2059

    Google Scholar 

  • Yakowitz SJ (1982) Dynamic programming applications in water resources. Water Resour Res 18(4):673–696

    Google Scholar 

  • Yamout G, El-Fadel M (2005) An optimization approach for multi-sectoral water supply management in the Greater Beirut area. Water Resour Manag 19:791–812

    Google Scholar 

  • Yang C-C, Chang L-C, Chen C-S, Yeh M-S (2009) Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming. Water Resour Manag 23(3):417–437

    Google Scholar 

  • Yaron D, Dinar A (1982) Optimal allocation of farm irrigation water during peak seasons. Am J Agric Econ 64:681–689

    Google Scholar 

  • Yazdi J, Salehi Neyshabouri SAA (2012) A simulation-based optimization model for flood management on a watershed scale. Water Resour Manag 26:4569–4586

    Google Scholar 

  • Yeh WWG (1992) Systems analysis in ground-water planning and management. J Water Resour Plan Manag ASCE 118(3):224–238

    Google Scholar 

  • Zhang Y-F (1996) The prediction of water and salt regime in salt affected areas by numerical simulation. J Hydrodynamics 2:52–61

    Google Scholar 

  • Zhao C, Wang Y, Song Y, Li B (2004) Biological drainage characteristics of alakalized desert soils in north-western China. J Arid Environ 56:1–9

    Google Scholar 

Download references

Acknowledgements

The author extends sincere gratitude to the editors and reviewers of the journal, whose constructive and insightful comments and suggestions led to considerable improvement to the early versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Singh.

Additional information

Published in the theme issue “Optimization for Groundwater Characterization and Management”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A. Review: Computer-based models for managing the water-resource problems of irrigated agriculture. Hydrogeol J 23, 1217–1227 (2015). https://doi.org/10.1007/s10040-015-1270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1270-1

Keywords

Navigation