Abstract
Saline formations are considered to be candidates for carbon sequestration due to their great depths, large storage volumes, and widespread occurrence. However, injecting carbon dioxide into low-permeability reservoirs is challenging. An active demonstration project for carbon dioxide sequestration in the Ordos Basin, China, began in 2010. The site is characterized by a deep, multi-layered saline reservoir with permeability mostly below 1.0 × 10−14 m2. Field observations so far suggest that only small-to-moderate pressure buildup has taken place due to injection. The Triassic Liujiagou sandstone at the top of the reservoir has surprisingly high injectivity and accepts approximately 80 % of the injected mass at the site. Based on these key observations, a three-dimensional numerical model was developed and applied, to predict the plume dynamics and pressure propagation, and in the assessment of storage safety. The model is assembled with the most recent data and the simulations are calibrated to the latest available observations. The model explains most of the observed phenomena at the site. With the current operation scheme, the CO2 plume at the uppermost reservoir would reach a lateral distance of 658 m by the end of the project in 2015, and approximately 1,000 m after 100 years since injection. The resulting pressure buildup in the reservoir was below 5 MPa, far below the threshold to cause fracturing of the sealing cap (around 33 MPa).
Résumé
Les formations salines sont considérées comme étant de bons candidats pour la séquestration du carbone, du fait de leurs grandes profondeurs, de leurs importants volumes de stockage, et de leur présence sur de grandes étendues. Cependant, l’injection du CO2 au sein de réservoirs de faible conductivité hydraulique constitue un défi. Un projet de démonstrateur pour la séquestration du CO2 dans le bassin de l’Ordos, en Chine, a débuté en 2010. Le site est caractérisé par un réservoir salin multicouche profond, avec une perméabilité généralement inférieure à 1.0•10-14 m2. Jusqu’à maintenant, les observations de terrain indiquent que seules des pressions faibles à modérées ont été induites par l’injection. Le grès triasique de Liujiagou, situé au toit du réservoir, est caractérisé par une capacité d’injection étonnamment élevée et accepte environ 80 % de la masse injectée sur le site. Un modèle numérique tri-dimensionnel a été développé à partir de ces observations clefs et appliqué, pour prédire les dynamiques du panache et la propagation de la pression, et évaluer la sécurité du stockage. Le modèle est assemblé avec les données les plus récentes et les simulations ont été calées avec les dernières observations disponibles. Le modèle explique l’essentiel des phénomènes observés sur le site. Avec le programme d’opération actuel, le panache de CO2 au toit du réservoir atteindrait latéralement une distance de 658 m à la fin du projet en 2015, et environ 1000 m après 100 ans à partir de l’injection. La pression résultante au sein du réservoir était inférieure à 5 MPa, nettement en-dessous du seuil de fracturation de la formation de scellement du réservoir (environ 33 MPa).
Resumen
Las formaciones salinas son consideradas candidatas para el secuestro de carbono debido a su existencia en grandes profundidades, grandes volúmenes de almacenamiento y presencia generalizada. Sin embargo, la inyección de dióxido de carbono en reservorios de baja permeabilidad es un desafío. Un proyecto de demostración activa, para el secuestro de dióxido de carbono en la cuenca de Ordos, China, se inició en 2010. El sitio se caracteriza por un reservorio salino multicapa profundo con permeabilidad mayormente debajo de 1.0 × 10−14 m2. Las observaciones de campo hasta el momento sugieren que sólo el pequeño a moderado aumento de presión ha tenido lugar debido a la inyección. La arenisca triásica en el techo del reservorio tiene sorpresivamente una alta inyectividad y acepta aproximadamente el 80 % de la masa inyectada en el sitio. Sobre la base de estas observaciones claves, se desarrolló y aplicó un modelo numérico, para predecir la dinámica y presión de la pluma de propagación, y para la evaluación de la seguridad del almacenamiento. El modelo se ensambla con los datos más recientes y las simulaciones son calibradas con las últimas observaciones disponibles. El modelo explica la mayoría de los fenómenos observados en el sitio. Con el esquema de operación actual, la pluma de CO2 en el reservorio superior podría alcanzar una distancia lateral de 658 m para el final del proyecto en 2015, y aproximadamente 1,000 m después de 100 años de inyección. La acumulación de presión resultante en el depósito estaba por debajo 5 MPa, muy por debajo del umbral para provocar la fractura de la capa de cierre (alrededor de 33 MPa).
摘要
咸水层由于其深度大、储存容积大及广泛分布通常被选为碳封存的候选地。然而,把二氧化碳注入到低透水性的储层中是一项挑战。2010年,在中国鄂尔多斯盆地开展了二氧化碳封存示范项目。场地为一个深的、多层的咸水层,渗透性大部分低于1.0 × 10−14 米2。到目前为止的野外观测结果显示,由于二氧化碳注入,只出现了小到中的压力抬升。储层之上的三叠纪刘家沟砂岩层具有惊人高的吸气量,接受了场地大约80%的注入量。基于这些关键的观测结果,建立和应用了三维数值模型,用来预测压力传播的羽体动态变化及用于储存安全的评价。模型采用最新的数据,针对最新现有的观测结果对模型进行了校准。模型能够解释场地所观测到的大部分现象。根据目前运行计划,储层最上面的二氧化碳羽在2015年项目结束时将侧向到达658米的距离,注入100年后大约到达1,000米的距离。所导致的储层内压力抬升低于5 MPa,远低于引起密封盖层破裂的阈值(33 MPa左右)。
Resumo
Formações salinas são consideradas como candidatas para sequestro de carbono devido a sua grande profundidade, grande volume de armazenamento e ampla ocorrência. Entretanto, injetar dióxido de carbono em reservatórios de baixa permeabilidade é desafiador. Um projeto de demonstração ativa para sequestro de dióxido de carbono na Bacia de Ordos, China, começou em 2010. A área é caracterizada como um reservatório salino profundo, de múltiplas camadas com permeabilidade, na maioria das vezes, abaixo de 1.0 × 10−14 m2. Observações de campo sugerem até o momento que apenas um pequeno a moderado aumento de pressão ocorreu devido à injeção. O arenito Triássico Liujiagou, no topo do reservatório, possui uma surpreendente alta injectividade e aceita aproximadamente 80 % da massa injetada na área. Baseado nestas observações, um modelo numérico tridimensional foi desenvolvido e aplicado para prever a dinâmica da pluma, a propagação da pressão e avaliar a segurança do armazenamento. O modelo é elaborado com os dados mais recentes e as simulações são calibradas com as últimas observações disponíveis. O modelo explica a maioria dos fenômenos observados na área. Com o plano atual de operação, a pluma de CO2 no reservatório superior irá alcançar a distância de 658 m no final do projeto em 2015 e, aproximadamente, 1,000 m após 100 anos de injeção. O aumento de pressão resultante no reservatório foi abaixo de 5 MPa, muito abaixo do limite de fraturamento da camada selante (aproximadamente 33 MPa).
This is a preview of subscription content, access via your institution.

















References
Bachu S (2002) Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Convers Manag 43:87–102
Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289
Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279
Bai B, Li X, Liu M, Shi L, Li Q (2012) A fast explicit finite difference method for determination of wellhead injection pressure. J Cent South Univ 19:3266–3272
Benson SMP, Cook P, Anderson J, Bachu S, Nimir HB (coordinating lead authors) et al (2005) Underground geological storage. In: IPCC special report on carbon dioxide capture and storage, chapter 5. Intergovernmental Panel on Climate Change, Vienna
Berg S, Oedai S, Ott H (2013) Displacement and mass transfer between saturated and unsaturated CO2-brine systems in sandstone. Int J Greenhouse Gas Control 12:478–492
Best D, Beck B (2011) Status of CCS development in China. Energy Procedia 4:6141–6147
Chang C, Zhou Q, Xia L, Li X, Yu Q (2013) Dynamic displacement and non-equilibrium dissolution of supercritical CO2 in low-permeability sandstone: an experimental study. Int J Greenhouse Gas Control 14:1–14
Chen Y, Li YL, Wu JJ, Du J, Li XF, Wang Y (2014) CO2 monitoring with time-lapse VSP in China Northwest. Paper presented at the Fourth EAGE CO2 Geological Storage Workshop: Demonstrating Storage Integrity and Building Confidence in CCS, Stavanger, Norway, 22–24 April 2014
Cooper C (2009) A technical basis for carbon dioxide storage. Energy Procedia 1:1727–1733
Crain ER (2000) Crain’s petrophysical handbook, Spectrum. https://www.spec2000.net. Accessed May 2015
Dockrill B, Shipton ZK (2010) Structural controls on leakage from a natural CO2 geologic storage site: central Utah, U.S.A. J Struct Geol 32:1768–1782
Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3:837–847
Eccles JK, Pratson L, Newell RG, Jackson RB (2009) Physical and economic potential of geological CO2 storage in saline aquifers. Environ Sci Technol 43:1962–1969
Eigestad GT, Dahle HK, Hellevang B, Riis F, Johansen WT, Øian E (2009) Geological modeling and simulation of CO2 injection in the Johansen formation. Comput Geosci 13:435–450
Ennis-King J, Preston I, Paterson L (2005) Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys Fluids 17:084107
Esposito A, Benson SM (2010) Optimization of remediation of possible leakage from geologic CO2 storage reservoirs into groundwater aquifers. Soc Pet Eng SPE 133604:1–12
He J, Fang S, Hou F, Yan R, Zhao Z, Yao J, Tang X, Wu G (2013) Vertical zonation of weathered crust ancient karst and reservoir evaluation and prediction: a case study of M55-M51 sub-members of Majiagou Formation in gas fields, central Ordos Basin, NW China. Pet Explor Dev 40:572–581
Houghton JT, Meira-Filho LG, Callander BA, Harris N, Kattenburg A, Maskell Ke (1996) Climate change 1995: the science of climate change—contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge
Jahangiri HR, Zhang D (2011) Effect of spatial heterogeneity on plume distribution and dilution during CO2 sequestration. In J Greenhouse Gas Control 5:281–293
Jiao Z, Surdam RC, Zhou L, Stauffer PH, Luo T (2011) A feasibility study of geological CO2 sequestration in the Ordos Basin, China. Energy Procedia 4:5982–5989
Jung NH, Han WS, Watson ZT, Graham JP, Kim KY (2014) Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, east-central Utah. Earth Planet Sci Lett 403:358–367
Kopp A, Class H, Helmig R (2009) Investigations on CO2 storage capacity in saline aquifers, part 2: estimation of storage capacity coefficients. Int J Greenhouse Gas Control 3:277–287
Law DHS, Bachu S (1996) Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin. Energy Convers Manag 37:1167–1174
Ledley TS, Sundquist ET, Schwartz SE, Hall DK, Fellows JD, Killeen TL (1999) Climate change and greenhouse gases. EOS, Trans Am Geophys Union 80:453–458
Li R, Li Y (2008) Tectonic evolution of the western margin of the Ordos Basin (central China). Russ Geol Geophys 49:23–27
Li X, Liu Y, Bai B, Fang Z (2006) Ranking and screening of CO2 saline aquifer storage zones in China. Chin J Rock Mech Eng 25:963–968
Li Q, Liu G, Liu X, Li X (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project. Int J Greenhouse Gas Control 17:504–514
Liu M, Liu Z, Liu J, Zhu W, Huang Y, Yao X (2014) Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation: a case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin. Pet Explor Dev 41:185–192
Lumley D (2010) 4D seismic monitoring of CO2 sequestration. Lead Edge 29:150–155
Martens S, Liebscher A, Möller F, Würdemann H, Schilling F, Kühn M (2011) Progress report on the first European on-shore CO2 storage site at Ketzin (Germany): second year of injection. Energy Procedia 4:3246–3253
McPherson BJOL, Cole BS (2000) Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA. J Geochem Explor 69:65–69
Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. Int J Greenhouse Gas Control 4:659–667
Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522
Oladyshkin S, Class H, Helmig R, Nowak W (2011) A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv Water Resour 34:1508–1518
Oldenburg CM (2008) Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk. Environ Geol 54:1687–1694
Preston C, Monea M, Jazrawi W, Brown K, Whittaker S, White D, Law D, Chalaturnyk R, Rostron B (2005) IEA GHG Weyburn CO2 monitoring and storage project. Fuel Process Technol 86:1547–1568
Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA
Pruess K (2008) Leakage of CO2 from geologic storage: role of secondary accumulation at shallow depth. Int J Greenhouse Gas Control 2:37–46
Qiu X, Liu C, Mao G, Deng Y, Wang F, Wang J (2014) Late Triassic tuff intervals in the Ordos basin, Central China: their depositional, petrographic, geochemical characteristics and regional implications. J Asian Earth Sci 80:148–160
Ran X, Fu J, Wei X, Ren J, Sun L, Bao H (2012) Evolution of the Ordovician top boundary and its relationship to reservoirs’ development, Ordos Basin. Pet Explor Dev 39:165–172
Ren XK, Cui YJ, Bu XP, Tan YJ, Zhang JQ (2010) Analysis of the potential of CO2 geological storage in the Ordos basin. Energy China 32:29–32
Saripalli P, McGrail P (2002) Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration. Energy Convers Manag 43:185–198
Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596
Sun Y, Su RN (2012) Analysis on characteristics of temperature variation in Ordos in recent 51 years. Meteorol J Inn Mong 5:16–18
US DOE (2007) Carbon sequestration ATLAS of the United States and Canada Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, WV, 90 pp
Van der Zwaan B, Gerlagh R (2009) Economics of geological CO2 storage and leakage. Clim Chang 93:285–309
Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898
Vilarrasa V, Bolster D, Dentz M, Olivella S, Carrera J (2010) Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp Porous Media 85:619–639
Watson FE, Mathias SA, Daniels SE, Jones RR, Davies RJ, Hedley BJ, van Hunen J (2014) Dynamic modelling of a UK North Sea saline formation for CO2 sequestration. Pet Geosci 20:169–185
Wu X (2013) Carbon dioxide capture and geological storage: the first massive exploration. China Science Press, Beijing
Wu XZ (2014) Shenhua Group’s carbon capture and storage (CCS) demonstration. Mining Rep 150:81–84
Xie J, Zhang K, Hu L, Wang Y, Chen M (2015) Understanding of the carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin with numerical simulations. Greenhouse Gases Sci Technol 5:1–19
Yang H, Deng X (2013) Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin. Pet Explor Dev 40:549–557
Yang H, Fu J, He H, Liu X, Zhang Z, Deng X (2012) Formation and distribution of large low-permeability lithologic oil regions in Huaqing, Ordos Basin. Pet Explor Dev 39:683–691
Yang R, He Z, Qiu G, Jin Z, Sun D, Jin X (2014) A Late Triassic gravity flow depositional system in the southern Ordos Basin. Pet Explor Dev 41:724–733
Zhang W, Li Y, Xu T, Cheng H, Zheng Y, Xiong P (2009) Long-term variations of CO2 trapped in different mechanisms in deep saline formations: a case study of the Songliao Basin, China. Int J Greenhouse Gas Control 3:161–180
Zhao R, Cheng J, Zhang K (2012) CO2 plume evolution and pressure buildup of large-scale CO2 injection into saline aquifers in Sanzhao Depression, Songliao Basin, China. Transp Porous Media 95:407–424
Zhou Q, Birkholzer JT, Tsang CF, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenhouse Gas Control 2:626–639
Acknowledgements
The authors wish to thank two anonymous reviewers for their careful review of this work; their specific suggestions help improve the paper significantly. Funding for this work was granted in part by China Ministry of Science and Technology, under the National Key Technologies R&D Program (grant No. 2011BAC08B00). Supplementary funding was provided by National Energy Administration under grant No. NY20111102-1 of the National Energy Application Technology Research and Engineering Demonstration Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xie, J., Zhang, K., Hu, L. et al. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China. Hydrogeol J 23, 1465–1480 (2015). https://doi.org/10.1007/s10040-015-1267-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-015-1267-9
Keywords
- China
- Geological CO2 storage
- Multiphase flow
- Saline aquifer
- TOUGH2