Skip to main content
Log in

Dispersive thermohaline convection near salt domes: a case at Napoleonville Dome, southeast Louisiana, USA

Advection dispersive thermohaline à proximité de dômes salifères: le cas du dôme de Napoleonville, Sud Est de la Louisiane, Etats Unis d’Amérique

Convección termohalina dispersiva próxima a los domos salinos: un caso en el Domo Napoleonville, sudeste de Louisiana, EEUU

鹽丘附近的分散溫鹽對流: 美國路易斯安那州東南邊拿破崙維爾鹽丘的研究

بررسی پدیده ترموهالاین در اطراف گنبدهای نمکی با در نظر گرفتن شار پخشی سیال: مطالعه گنبد نمکی ناپلئونویل درجنوب شرقی ایالت لویزیانا، آمریکا

Convecção dispersiva termohalina próxima a domos de sal: o caso no Domo de Napoleonville, sudeste da Louisiana, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Density-driven flow around salt domes is strongly influenced by salt concentration and temperature gradients. In this study, a thermohaline convection numerical modeling is developed to investigate flow, salinity, and heat transport around salt domes under the impact of fluid dispersivity and variable density and viscosity. ‘Dispersive fluid flux of total fluid mass’ is introduced to the density-driven flow equation to improve thermohaline modeling in porous media. The dispersive fluid flux term is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The model is first tested by a hypothetical salt-dome problem, where a circulation of flow is induced by an overpressure and density effect. The result shows a distinct salt-transport change due to the inclusion of the dispersive fluid flux and temperature effect. Then, the model is applied to investigate changes of groundwater flow, salinity, and heat transport near the west of Napoleonville salt dome, southeastern Louisiana, USA, due to a salt cavern failure. The result shows that an instant overpressure assumed to be created by the salt-cavern wall breach has little impact on salinity near the ground surface within a period of 3 months. However, salinity is significantly elevated near the breach area of the salt cavern, caused by strong flow velocities.

Résumé

Les écoulements sous l’effet de la densité autour des dômes salifères sont fortement influencés par la concentration de sel et par les gradients de température. Dans cette étude, un modèle numérique d’advection thermohaline est développé pour étudier les écoulements, la salinité et le transport de chaleur autour de dômes de sel sous influence de la dispersivité des fluides et la variabilité de la densité et de la viscosité. La notion d’ « écoulement dispersif de fluide de la masse total du fluide » est introduite dans l’équation d’écoulements sous l’effet de la densité afin d’améliorer la modélisation thermohaline en milieu poreux. Le terme d’écoulement dispersif du fluide est dérivé pour prendre en compte un écoulement fluidique additionnel influencé par le gradient de densité et par la dispersion mécanique. Le modèle a été tout d’abord testé sur un problème hypothétique de dôme de sel, où les écoulements sont induits par une surpression et par un effet de densité. Les résultats montrent une modification distincte du transport du sel due à l’intégration d’un écoulement dispersif du fluide et à un effet de température. Ensuite, le modèle est appliqué pour étudier les modifications d’écoulement d’eau souterraine, de salinité et de transport de chaleur à proximité occidentale du dôme de sel de Napoleonville, dans le Sud-Est de la Louisiane, Etats Unis d’Amérique, en raison d’une rupture de caverne de sel. Le résultat montre que la surpression instantanée supposée à l’origine de l’effondrement de la caverne de sel a peu d’impact sur la salinité près de la surface du sol au cours d’une période de 3 mois. Cependant, la salinité est élevée de manière significative à proximité de la zone d’effondrement de la caverne de sel, à cause des vitesses d’écoulement importantes.

Resumen

El flujo de densidad de impulso alrededor de los domos de sal está fuertemente influenciado por la concentración de sal y por los gradientes de temperatura. En este estudio, se desarrolla un modelo numérico de convección termohalina para investigar el flujo, salinidad y transporte de calor alrededor de domos salinos bajo el impacto de la dispersividad del fluido y de la viscosidad y densidad variables. Se introduce el ‘Flujo Dispersivo del fluido de la masa total del fluido’ a la ecuación de flujo de densidad de impulso para mejorar la modelación termohalina en el medio poroso. El término del flujo dispersivo del fluido se deriva para representar un flujo impulsado adicional del fluido por el gradiente de densidad y la dispersión mecánica. El modelo es primero testeado por un problema de domo salino hipotético, donde una circulación de flujo se induce por una sobrepresión y un efecto de la densidad. El resultado muestra un marcado cambio en el transporte salino debido a la inclusión del flujo dispersivo del fluido y al efecto de la temperatura. Luego, el modelo se aplica para investigar cambios del flujo de agua subterránea, salinidad y transporte de calor cerca del oeste del domo salino de Napoleonville, en sudeste de Louisiana, EEUU, debido a una falla en la caverna de sal. El resultado muestra que una sobrepresión instantánea supone crear una pared de ruptura en la caverna de sal que tiene poco impacto en la salinidad cerca de la superficie del suelo dentro de un plazo de 3 meses. Sin embargo, la salinidad es significativamente elevada cerca del área de ruptura de la caverna de sal, causado por las Fuertes velocidades de flujo.

摘要

圍繞在鹽丘附近的地下水流深受鹽水濃度和溫度梯度的影響。這項研究發展一個溫鹽對流數值模式,來探討流體分散性和水密度及粘度可變性的對鹽丘附近地下水流,鹽傳輸和熱傳導的影響。’總流體質量的分散流體流量’被引入到密度驅動的多孔介質流方程式,以改善對溫鹽對流的模擬。分散式流體流量是密度梯度和機械式分散驅動下所產生的額外流體流量。該數值模式首先被測試在一個假想的鹽丘問題上,去驗證過壓及密度效應是否引發循環流。結果顯示,考慮分散流體流量和溫度效應對鹽傳輸有顯著的改變。然後,該模式應用於研究美國路易斯安那州東南邊拿破崙維爾鹽丘,一座鹽穴崩壞產生對地下水流,鹽傳輸和熱傳導的改變。在鹽穴壁崩壞瞬間產生過壓的假設下,模擬結果顯示,瞬間過壓三個月內對地表附近鹽度的影響不大。然而,地下水鹽度在鹽穴崩壞附近有顯著上升,這是因為高流速所產生的結果.

چکیده

جریان با جرم مخصوص متغیر در اطراف گنبدهای نمکی متاثر از گرادیان غلظت نمک و گرادیان دما می باشد. در این تحقیق، مدل عددی پدیده ترموهالاین برای بررسی جریان سیال، انتقال نمک و انتقال حرارت در اطراف گنبدهای نمکی و تحت تاثیر شار پخشی سیال و تغییرات جرم مخصوص و لزجت سیال توسعه می یابد. افزودن شار پخشی سیال به معادله جریان در مدلسازی پدیده ترموهالاین، به نتایج بهتری منجر می شود. شار پخشی سیال در معادله جریان، ناشی از گرادیان جرم مخصوص و پخش مکانیکی می باشد. مدل توسعه یافته در این تحقیق ابتدا با مدلسازی یک گنبد نمکی فرضی آزمایش می شود. شکل گیری یک جریان چرخشی در اثر وجود ناحیه پرفشار در کف آبخوان و اختلاف جرم مخصوص موجود در نقاط مختلف آن مشاهده می شود. افزودن شار پخشی سیال به معادله جریان، و همچنین منظور نمودن تاثیر دما بر جرم مخصوص و لزجت آب، تاثیر زیادی بر نتایج عددی به دست آمده دارد. مدل توسعه یافته در این تحقیق برای بررسی تغییرات جریان آب زیرزمینی، انتقال نمک و انتقال حرارت ناشی از فروریختن حفره موجود در مجاور ضلع غربی گنبد نمکی ناپلئونویل در جنوب شرقی ایالت لویزیانا آمریکا به کار گرفته می شود. نتایج مدلسازی نشان می دهد که افزایش فشار ناگهانی فرضی در حفره فروریخته شده در داخل گنبد نمکی در دوره زمانی سه ماهه، تاثیر زیادی بر گسترش شوری در مجاورت سطح زمین ندارد. به هر حال شوری آب در اطراف حفره فرو ریخته شده در ضلع غربی گنبد نمکی افزایش قابل توجهی داشته که می تواند ناشی از سرعت های بالای جریان در اطراف حفره باشد.

Resumo

O escoamento causado por diferenças de densidade ao redor de domos de sal é fortemente influenciado pela concentração de sal e gradientes de temperatura. Neste estudo, um modelo numérico de convecção termohalina é desenvolvido para investigar o escoamento, salinidade e transporte de calor ao redor de domos de sal sob o impacto da dispersividade do fluido, variação de densidade e viscosidade. O “escoamento dispersivo de massa total de fluido” é introduzido na equação de escoamento por diferença de densidade para melhorar a modelagem termohalina em meios porosos. O termo de escoamento dispersivo de fluido é derivado para levar em conta um fluxo de fluido adicional, governado pelo gradiente de densidade e dispersão mecânica. O modelo é primeiramente testado no problema de um domo de sal hipotético, no qual a circulação do escoamento é causada por um excesso de pressão e efeito da diferença de densidade. O resultado mostra uma mudança distinta no transporte de sal causado pela inclusão do fluxo de escoamento dispersivo e do efeito da temperatura. Depois, o modelo é aplicado na investigação de mudanças de escoamento de água subterrânea, salinidade e transporte de calor, próximo a porção oeste do domo de sal de Napoleonville, sudeste da Louisiana, EUA, causadas por uma fratura em uma caverna de sal. O resultado mostra que um excesso instantâneo de pressão, supostamente criado pela fratura na parede da caverna de sal, tem um pequeno impacto na salinidade próxima à superfície do solo dentro do período de 3 meses. Entretanto, a salinidade é significativamente elevada próxima à região da fratura da caverna de sal, causada por grandes velocidades de escoamento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Bear J, Bachmat Y (1990) Introduction to modeling phenomena of transport in porous media. Kluwer, Dordrecht, The Netherlands, 553 pp

    Book  Google Scholar 

  • Bear J, Cheng AHD (2010) Modeling groundwater flow and contaminant transport. Springer, Heidelberg, Germany, 834 pp

    Book  Google Scholar 

  • Bebout DG, Gutierrez DR (1981) Geopressured geothermal resource in Texas and Louisiana: geological constraints. In: Bebout DG, Bachman AL (eds) Proceedings of the Fifth U.S. Coast Geopressured-Geothermal Energy Conference. Louisiana State University, Baton Rouge, LA, pp 13–28

    Google Scholar 

  • Beckman JD, Williamson AK (1990) Salt-dome locations in the Gulf Coastal Plain, south-central United States. US Geol Surv Water Resour Invest Re 90–4060, 44 pp

  • Bethke CM, Lee M, Park J (2007) Basin modeling with Basin2: a guide to using the Basin2 Software Package Release 5.0.1. Hydrology Program, Univ. of IL, Urbana, IL, 210 pp

  • Boufadel M, Suidan M, Venosa A (1999) Numerical modeling of water flow below dry salt lakes: effect of capillarity and viscosity. J Hydrol 221:55–74. doi:10.1016/S0022-1694(99)00077-3

    Article  Google Scholar 

  • Diersch HJG, Kolditz O (1998) Coupled groundwater flow and transport: thermohaline and 3D convection systems. Adv Water Resour 21:401–425. doi:10.1016/S0309-1708(97)00003-1

    Article  Google Scholar 

  • Elder JW (1967) Transient convection in a porous medium. J Fluid Mech 27(3):609–623. doi:10.1017/S0022112067000576

    Article  Google Scholar 

  • Evans DG (1989) Theoretical and numerical models for heat and mass transport and groundwater flow near salt domes. PhD Thesis, Louisiana State University, Baton Rouge, LA, USA, 324 pp

  • Evans DG, Nunn JA (1989) Free thermohaline convection in sediments surrounding a salt column. J Geophys Res 94:413–422. doi:10.1029/JB094iB09p12413

    Google Scholar 

  • Evans DG, Nunn JA, Hanor JS (1991) Mechanisms driving groundwater flow near salt domes. Geophys Res Lett 18:927–930. doi:10.1029/91GL00908

    Article  Google Scholar 

  • Geiger S, Driesner T, Heinrich CA, Mattha SK (2006) Multiphase thermohaline convection in the Earth’s crust: II. benchmarking and application of a finite element-finite volume solution technique with a NaCl–H2O equation of state. Transp Porous Media 63:435–461. doi:10.1007/s11242-005-0109-y

    Article  Google Scholar 

  • Gemitzi A, Tolikas D (2007) HYDRA model: simulation of salt intrusion in coastal aquifers using Visual Basic and GIS. J Environ Model Softw 22:924–936. doi:10.1016/j.envsoft.2006.03.007

    Article  Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for the simulation of three-dimensional variable-density ground-water flow. US Geol Surv Open-File Rep 01–434

  • Halbouty MT, Halbouty MT (1979) Salt domes, Gulf Region: United States and Mexico, 2nd edn. Gulf Publishing, Houston, TX, 561 pp

    Google Scholar 

  • Hanor JS, Bailey JE (1983) Use of hydraulic head and hydraulic gradient to characterize geopressured sediments and the direction of fluid migration in the Louisiana Gulf Coast. Trans Gulf Coast Assoc Geol Soc 33:115–122

    Google Scholar 

  • Hart BS, Flemings PB (2012) Porosity and pressure: role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology 23:45–48. doi:10.1130/0091-7613(1995)023<0045:PAPROC>2.3.CO;2

    Article  Google Scholar 

  • Herbert AW, Jackson CP, Lever DA (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent on concentration. Water Resour Res 24:1781–1795. doi:10.1029/WR024i010p01781

    Article  Google Scholar 

  • Hilchie DW (1982) Applied Openhole Log Interpretation, 2nd edn. Douglas W. Hilchie, Inc., Golden, CO, USA

  • Hughes JD, Sanford WE (2004) SUTRA-MS: a version of SUTRA modified to simulate heat and multiple-solute transport. US Geol Surv Open-File Rep 2004–1207, 152 pp

  • Huyakorn PS, Andersen PF, Mercer JW, White HO (1987) Saltwater intrusion in aquifers-development and testing of a three-dimensional finite-element model. Water Resour Res 23:293–312. doi:10.1029/WR023i002p00293

    Article  Google Scholar 

  • Jamshidzadeh Z (2013) Modeling of saltwater intrusion into groundwater (in Persian). PhD Thesis, K.N. Toosi University of Technology, Tehran, Iran, 180 pp

  • Jamshidzadeh Z, Tsai FTC, Mirbagheri SA, Ghasemazadeh H (2013) Fluid dispersion effects on density-driven thermohaline flow and transport in porous media. Adv Water Resour 61:12–28. doi:10.1016/j.advwatres.2013.08.006

    Article  Google Scholar 

  • Kolditz O, Ratke R, Diersch HJG, Zielke W (1998) Coupled groundwater slow and transport: 1. verification of variable density flow and transport models. Adv Water Resour 21:27–46. doi:10.1016/S0309-1708(96)00034-6

    Article  Google Scholar 

  • LaDNR (2012) DNR/Shaw public brief, Pierre Part, LA, October 23, 2012. Louisiana Department of Natural Resources. http://dnr.louisiana.gov/assets/OC/Public_Briefing_2012_10_23_letter.pdf. Accessed February 16, 2015

  • LaDNR (2014) Bayou Corne incident 2012. Louisiana Department of Natural Resources, Baton Rouge, LA. http://dnr.louisiana.gov/index.cfm?md=pagebuilder&tmp=home&pid=939&pnid=0&nid=172. Accessed February 16, 2015

  • Langevin CD, Dausman AM, Sukop MC (2010) Solute and heat transport model of the Henry and Hilleke laboratory experiment. Ground Water 48(5):757–770. doi:10.1111/j.1745-6584.2009.00596.x

    Article  Google Scholar 

  • Magri F, Bayer U, Maiwald U, Otto R, Thomsen C (2009) Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid-transport processes in a shallow salt-dome environment. Geofluids 9(3):182–194. doi:10.1111/j.1468-8123.2009.00242.x

    Article  Google Scholar 

  • McPherson BJOL, Garven G (1999) Hydrodynamics and overpressure mechanisms in the Sacramento basin, California. Am J Sci 299:429–466. doi:10.2475/ajs.299.6.429

    Article  Google Scholar 

  • Nunn JA (1996) Buoyancy-driven propagation of isolated fluid-filled fractures: implications for fluid transport in Gulf of Mexico geopressured sediments. J Geophys Res 101:2963–2970. doi:10.1029/95JB03210

    Article  Google Scholar 

  • Oldenburg CM, Pruess K (1995) Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Resour Res 31:289–302. doi:10.1029/94WR02272

    Article  Google Scholar 

  • Oldenburg CM, Hinkins RL, Moridis GJ, Pruess K (1995) On the Development of MP-TOUGH2. Proceedings of TOUGH Workshop, Lawrence Berkeley Laboratory, Berkeley, CA

    Book  Google Scholar 

  • Oude Essink GHP (1998) MOC3D adapted to simulate 3D density-dependent groundwater flow. In: Proceedings of MODFLOW ’98 Conference at the International Ground Water Modeling Center, vol 1. Colorado School of Mines, Golden, CO, pp 291–300

    Google Scholar 

  • Ranganathan V (1992) Basin dewatering near salt domes and formation of brine plumes. J Geophys Res 97:4667–4683. doi:10.1029/91JB03082

    Article  Google Scholar 

  • Ranganathan V, Hanor JS (1988) Basin density-driven groundwater flow near salt domes. Chem Geol 74:173–188. doi:10.1029/91JB03082

    Article  Google Scholar 

  • Ranganathan V, Hanor JS (1989) Perched brine plumes above salt domes and dewaternig of geopressured sediments. J Hydrol 110:63–86. doi:10.1016/0022-1694(89)90237-0

    Article  Google Scholar 

  • Servan-Camas B, Tsai FTC (2009) Saltwater intrusion modeling in heterogeneous confined aquifers using two-relaxation-time lattice Boltzmann method. Adv Water Resour 32:620–631. doi:10.1016/j.advwatres.2009.02.001

    Article  Google Scholar 

  • Servan-Camas B, Tsai FTC (2010) Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem. Water Resour Res 46, W02515. doi:10.1029/2009WR007837

    Google Scholar 

  • Shaw Group (2012) Shaw public briefing, Napoleonville, LA, December 18, 2012. http://dnr.louisiana.gov/assets/OC/BC_All_Updates/Plans_Reports/Public_Briefing_2012_12_18.pdf. Accessed February 16, 2015

  • Smith L, Chapman SD (1983) On the thermal effects of groundwater flow: 1. regional scale systems. J Geophys Res 88:593–608. doi:10.1029/JB088iB01p00593

    Article  Google Scholar 

  • Thorne D, Langevin CD, Sukopc MC (2006) Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT. J Comput Geosci 32:1758–1768. doi:10.1016/j.cageo.2006.04.005

    Article  Google Scholar 

  • Van Duijna CJ, Peletierb LA, Schottingc RJ (1988) Brine transport in porous media: self-similar solutions. Adv Water Resour 22:285–297. doi:10.1016/S0309-1708(98)00008-6

    Article  Google Scholar 

  • Van Reeuwijk M, Mathias SA, Simmons CT, Ward JD (2009) Insights from a pseudo spectral approach to the Elder problem. Water Resour Res 45:1–13. doi:10.1029/2008WR007421

    Google Scholar 

  • Voss CI (1984) A finite-element simulation model for saturated–unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. US Geol Surv Water Resour Invest Rep 84–4369, 409 pp

  • VSFusion (2010) Velocity survey & salt flank imaging report for Texas Brine Co., Well: Oxy Geismar 3, location: Assumption Pa. LA, final report, VSFusion, Houston, TX

  • Younes A (2003) On modeling the multidimensional coupled fluid flow and heat or mass transport in porous media. Int J Heat Mass Tran 46:367–379. doi:10.1016/S0017-9310(02)00264-8

    Article  Google Scholar 

Download references

Acknowledgements

Zahra Jamshidzadeh was supported by the Iran Ministry of Science, Research and Technology to conduct research at Louisiana State University. Frank Tsai and Jeffrey Hanor were supported in part by Grant/Cooperative Agreement Number G10AP00136 from the United States Geological Survey (USGS) to conduct saltwater intrusion simulation. Louisiana Department of Natural Resources (LaDNR) provided an original plot of the conceptual model. The contents of the study are solely the responsibility of the authors and do not necessarily represent the official views of the USGS or the LaDNR. Fabien Magri and two anonymous reviewers are acknowledged for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T. -C. Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidzadeh, Z., Tsai, F.T.C., Ghasemzadeh, H. et al. Dispersive thermohaline convection near salt domes: a case at Napoleonville Dome, southeast Louisiana, USA. Hydrogeol J 23, 983–998 (2015). https://doi.org/10.1007/s10040-015-1251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1251-4

Keywords

Navigation