Skip to main content

Discrete wetland groundwater discharges revealed with a three-dimensional temperature model and botanical indicators (Boxford, UK)

Exfiltrations discrètes en zone humide révélées par un modèle thermique tridimensionnel et par des indicateurs botaniques (Boxford, UK)

Las descargas de agua subterránea discretas en humedales reveladas con un modelo tridimensional de temperatura e indicadores botánicos (Boxford, Reino Unido)

采用三维温度模型和植物指标揭示分散的湿地地下水排泄(英国,博克斯福德)

Descargas discretas de água subterrânea em zonas húmidas identificadas com um modelo tridimensional de temperatura e com indicadores botânicos (Boxford, Reino Unido)

Abstract

Wetlands provide unique goods and services, as habitats of high biodiversity. Hydrology is the principal control on wetland functioning; hence, understanding the water source is fundamental. However, groundwater inflows may be discrete and easily missed. Research techniques are required with low cost and minimal impact in sensitive settings. In this study, the effectiveness of using a three-dimensional (3D) temperature model and botanical indicators to characterise groundwater discharge is explored at the CEH (Centre for Ecology and Hydrology) River Lambourn Observatory, Boxford, UK. This comprises a 10 ha lowland riparian wetland, designated for its scientific interest and conservation value. Temperature data were collected in winter at multiple depths down to 0.9 m over approximately 3.6 ha and transformed into a 3D model via ordinary kriging. Anomalous warm zones indicated distinct areas of groundwater upwelling which were concurrent with relic channel structures. Lateral heat propagation from the channels was minimal and restricted to within 5–10 m. Vertical temperature sections within the channels suggest varying degrees of groundwater discharge along their length. Hydrochemical analysis showed that warmer peat waters were akin to deeper aquifer waters, confirming the temperature anomalies as areas of groundwater discharge. Subsequently, a targeted vegetation survey identified Carex paniculata as an indicator of groundwater discharge. The upwelling groundwater contains high concentrations of nitrate which is considered to support the spatially restricted growth of Carex paniculata against a background of poor fen communities located in reducing higher-phosphate waters.

Résumé

Les zones humides apportent des retombées économiques par les habitats de grande biodiversité. L’hydrologie est le principal contrôle du fonctionnement d’une zone humide, et c’est pourquoi la compréhension du mécanisme d’alimentation en eau est fondamentale. Toutefois, les venues d’eau souterraine peuvent être discrètes et difficilement localisables. Des techniques de mise en évidence de faible coût ayant un impact minimum sur les milieux sensibles sont requises. Dans cette étude, l’efficacité de l’utilisation d’un modèle thermique tridimensionnel (3D) et d’indicateurs botaniques pour localiser les venues d’eau souterraine est explorée sur l’observatoire de la rivière Lambourn par le CEH (Centre d’études pour l’Ecologie et l’Hydrologie). Cet observatoire comprend une zone humide basse de 10 ha le long du cours d’eau, retenu pour son intérêt scientifique et sa valeur de conservation des espèces. Les données de températures ont été mesurées en hiver en de multiples points jusqu’à 0.9 m de profondeur sur environ 3.6 ha et représentées dans un modèle 3D par krigeage. Les zones avec des anomalies chaudes indiquent des zones distinctes de montée d’eaux souterraines correspondant à d’anciens chenaux en charge. La propagation latérale de la chaleur à partir des chenaux est minimale et limitée à 5–10 m. Les profils verticaux de températures dans les chenaux suggèrent des degrés variables de décharge d’eau souterraine. Les analyses hydrochimiques montrent que les eaux plus chaudes de tourbière sont analogues à celles d’aquifères plus profonds, confirmant que les anomalies de température correspondent à des aires de décharge d’eau souterraine. Par la suite, une étude botanique ciblée identifie Carex paniculata comme indicateur de la décharge d’eau souterraine. L’eau souterraine ascendante présente une grande concentration en nitrates, ce qui est considéré comme favorable à la croissance de Carex paniculata sur des surfaces restreintes contrastant avec contexte de communautés de marais situées dans des zones d’eaux réductrices plus riches en phosphates.

Resumen

Los humedales proporcionan productos económicos únicos como hábitats de alta biodiversidad. La hidrología es el control principal del funcionamiento de un humedal, por lo tanto entender las fuentes de agua resulta fundamental. Sin embargo, las entradas de agua subterránea pueden ser discretas y fácilmente perdidas. Se requieren técnicas de investigación de bajos costos e impactos mínimos en configuraciones sensibles. En este estudio, se explora la efectividad de usar un modelo de temperatura tridimensional (3D) e indicadores botánicos para caracterizar la descarga de agua subterránea en el CEH (Centre for Ecology and Hydrology) River Lambourn Observatory, Boxford, Reino Unido. Este comprende un humedal ripariano de tierras bajas de 10-ha, seleccionado por su interés científico y su valor de conservación. Los datos de temperatura se recolectaron en invierno a profundidades múltiples de hasta 0.9 m sobre aproximadamente 3.6 ha y transformados en un modelo 3D a través de un krigeado común. Las zonas anómalas cálidas indicaron distintas áreas de surgencia de agua subterránea las que eran concurrentes con estructuras de canales relictos. La propagación lateral del calor de los canales fue mínima y restringida hasta dentro de unos 5–10 m. Las secciones verticales de temperatura dentro de los canales sugieren varios grados de descarga de agua subterránea a lo largo de su longitud. Los análisis hidroquímicos mostraron que aguas más cálidas de turba eran similares a las aguas de acuíferos más profundos, confirmando las anomalías de las temperaturas como áreas de descarga de agua subterránea. Subsecuentemente, un relevamiento específico de la vegetación identificó a Carex paniculata como un indicador de descarga de agua subterránea. El agua subterránea surgente contiene altas concentraciones de nitrato el cual se considera responsable del crecimiento espacialmente restringido de Carex paniculata contra un fondo de comunidades pantanosas pobres localizadas en aguas reductoras de altos fosfatos.

摘要

湿地作为高度的生物多样性栖息地提供了独一无二的经济产出。对湿地运行来说,水文条件是主要的控制因素,因此,了解水源是最基本的。然而,地下水的流入可能是分散的,而且容易被错过。在敏感的背景下这就需要成本低和影响最小的研究技术。本研究中,探讨了在英国博克斯福德Lambourn河观测站生态和水文中心采用三维温度模型和植物指标描述地下水排泄的有效性。这个中心包括一个10公顷的低地滨河湿地,由于其科学兴趣和保护价值而选定此地。冬季在大约3.6公顷的范围内收集了地下0.9米内不同深度的温度数据,并通过普通克里格转换成三维模型。异常温度带显示了地下水上涌的明显区域,地下水上涌一般出现在残留的渠道构造上。渠道的侧向热传播很小,并限制在5-10米之内。渠道内的垂向温度截面显示出地下水沿其长度排泄的程度不同。水文化学分析显示较热的泥碳水类似于深层的含水层水,证实了作为地下水排泄区的温度异常现象。随后的目标植被调查确定苔属植物作为地下水排泄的指标。上涌的地下水硝酸盐含量很高,在降低的磷酸盐含量高的水中糟糕的沼泽背景下,很可能支撑着空间上受限的苔属植物的生长。

Resumo

As zonas húmidas providenciam estruturas económicas únicas como habitats de grande biodiversidade. O principal controlo sobre o funcionamento de zonas húmidas é a hidrologia, pelo que é fundamental compreender a origem da água. No entanto, os fluxos de água subterrânea podem ser discretos, e por isso facilmente ignorados. São necessárias técnicas de pesquisa com baixo custo e mínimo impacte em ambientes sensíveis. Neste estudo, para caraterizar a descarga de águas subterrâneas, é testada a eficácia do uso de um modelo de temperatura tridimensional (3D) e indicadores botânicos, explorados no CEH (Centro de Ecologia e Hidrologia) do Observatório do Rio Lambourn, Boxford, Reino Unido. Este estudo compreende uma zona húmida ripícola numa planície de 10 ha, escolhida pelo seu interesse científico e valor conservacionista. Os dados de temperatura foram coletados no inverno a várias profundidades até aos 0.9 m, ao longo de aproximadamente 3.6 ha e transformados num modelo 3D através de krigagem simples. Zonas com anomalias quentes indicaram áreas distintas com ascensão de águas subterrâneas que concorrem com estruturas de paleocanais. A propagação de calor lateral a partir dos canais foi mínima e restrita a 5–10 m. Secções verticais de temperatura dentro dos canais sugerem diferentes graus de descarga de água subterrânea ao longo do comprimento. As análises hidroquímicas mostraram que as águas mais quentes de turfa são semelhantes às águas mais profundas do aquífero, confirmando as anomalias de temperatura como áreas de descarga de águas subterrâneas. Posteriormente, um levantamento da vegetação alvo identificou a Carex paniculata como um indicador de descarga de águas subterrâneas. As águas subterrâneas ascendentes contêm altas concentrações de nitrato, que é considerado o suporte para o crescimento, espacialmente restrito, de Carex paniculata, contra um fundo pobre de comunidades pantanosas, localizadas em águas redutoras com elevado teor de fosfato.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abesser C, Shand P, Gooddy D, Peach D (2008) The role of alluvial valley deposits in groundwater–surface water exchange in a Chalk river. IAHS, Wallingford, UK

  2. Acreman M, Miller F (2006) Hydrological impact assessment of wetlands. Proceedings of the International Symposium on Groundwater Sustainability (ISGWAS) Alicante, Spain, January 2006

  3. Aguilar JB, Orban P, Dassargues A, Brouyère S (2007) Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium. Hydrogeol J 15:1615–1627

    Article  Google Scholar 

  4. Allen DJ, Darling WG, Gooddy DC, Lapworth DJ, Newell AJ, Williams AT, Allen D, Abesser C (2010) Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeol J 18:1125–1141

    Article  Google Scholar 

  5. Almendinger JE, Leete JH (1998) Regional and local hydrogeology of calcareous fens in the Minnesota River Basin, USA. Wetlands 18:184–202

    Article  Google Scholar 

  6. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  7. Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady‐state? Using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrol Process 23:2165–2177

    Article  Google Scholar 

  8. Atkins (2005) Habitats Directive Stage 3 appropriate assessment: Kennet and Lambourn Floodplain SAC. Atkins, Surrey, UK

  9. Ausden M, Sutherland WJ, James R (2001) The effects of flooding lowland wet grassland on soil macroinvertebrate prey of breeding wading birds. J Appl Ecol 38:320–338

    Article  Google Scholar 

  10. Baines D, Smith DG, Froese DG, Bauman P, Nimeck G (2002) Electrical resistivity ground imaging (ERGI): a new tool for mapping the lithology and geometry of channel‐belts and valley‐fills. Sedimentology 49:441–449

    Article  Google Scholar 

  11. Baldwin A, Egnotovich M, Clarke E (2001) Hydrologic change and vegetation of tidal freshwater marshes: field, greenhouse, and seed-bank experiments. Wetlands 21:519–531. doi:10.1672/0277-5212(2001)021[0519:hcavot]2.0.co;2

    Article  Google Scholar 

  12. Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275:86–108

    Article  Google Scholar 

  13. Becker MW (2006) Potential for satellite remote sensing of ground water. Ground Water 44:306–318

    Article  Google Scholar 

  14. Bense V, Kooi H (2004) Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. J Geophys Res 109:B04103

    Google Scholar 

  15. Bravo HR, Jiang F, Hunt RJ (2002) Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour Res 38:1153

    Article  Google Scholar 

  16. Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK (2012) Using high resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour Res 48, W02527

  17. Chambers J, Wilkinson P, Uhlemann S, Sorensen J, Roberts C, Newell A, Ward W, Binley A, Williams P, Gooddy D (2014) Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection. Water Resour Res 50:5886–5905

    Article  Google Scholar 

  18. Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Groundwater 42:243–257

    Article  Google Scholar 

  19. Constantz J, Thomas CL, Zellweger G (1994) Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour Res 30:3253–3264

    Article  Google Scholar 

  20. Cuthbert M, Mackay R (2013) Impacts of nonuniform flow on estimates of vertical streambed flux. Water Resour Res 49(1):19–28

  21. De Gruijter J, Brus DJ, Bierkins MFP, Knotters M (2006) Sampling for natural resource monitoring. Springer, Berlin

  22. EEC (1992) Habitats Directive 92/43/EEC. EEC, Brussels

  23. Eisenreich S, Bannerman R, Armstrong D (1975) A simplified phosphorus analysis technique. Environ Lett 9:43–53

    Article  Google Scholar 

  24. Ellenberg H (1988) Vegetation ecology of Central Europe, 4th edn. (English translation of “Vegetation mitteleuropas mit den Alpen”). Cambridge University Press, Cambridge

  25. Everard M (2005) Water meadows. Forest Text, Wales

    Google Scholar 

  26. Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. J Ecol 1021–1048

  27. Gooddy D, Clay J, Bottrell S (2002) Redox-driven changes in porewater chemistry in the unsaturated zone of the chalk aquifer beneath unlined cattle slurry lagoons. Appl Geochem 17:903–921

    Article  Google Scholar 

  28. Goslee S, Brooks R, Cole C (1997) Plants as indicators of wetland water source. Plant Ecol 131:199–206

    Article  Google Scholar 

  29. Gowing D, Lawson C, Youngs E, Barber K, Rodwell J, Prosser M, Wallace H, Mountford J, Spoor G, Brand-Hardy DR (2002) The water regime requirements and the response to hydrological change of grassland plant communities. DEFRA-commissioned project BD1210, Institute of Water and Environment, Silsoe, UK

  30. Grootjans A, Van Diggelen R, Wassen M, Wiersinga W (1988) The effects of drainage on groundwater quality and plant species distribution in stream valley meadows. Vegetatio 75:37–48

    Article  Google Scholar 

  31. Hannah DM, Malcolm IA, Bradley C (2009) Seasonal hyporheic temperature dynamics over riffle bedforms. Hydrol Process 23:2178–2194

    Article  Google Scholar 

  32. Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42

  33. Hill M (1996) TABLEFIT Version 1.0: for identification of vegetation types: program manual. Institute of Terrestrial Ecology, Penicuik, UK

  34. Hoek D, Mierlo Anita J, Groenendael JM (2004) Nutrient limitation and nutrient‐driven shifts in plant species composition in a species‐rich fen meadow. J Veg Sci 15:389–396

    Article  Google Scholar 

  35. Hunt RJ, Krabbenhoft DP, Anderson MP (1996) Groundwater inflow measurements in wetland systems. Water Resour Res 32:495–507

    Article  Google Scholar 

  36. Keery J, Binley A, Crook N, Smith JW (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336:1–16

    Article  Google Scholar 

  37. Klijn F, Witte J-PM (1999) Eco-hydrology: groundwater flow and site factors in plant ecology. Hydrogeol J 7:65–77

    Article  Google Scholar 

  38. Krause S, Bronstert A (2005) An advanced approach for catchment delineation and water balance modelling within wetlands and floodplains. Adv Geosci 5:1–5

    Article  Google Scholar 

  39. Krause S, Blume T, Cassidy N (2012) Investigating patterns and controls of groundwater up-welling in a lowland river by combining fibre-optic distributed temperature sensing with observations of vertical head gradients. Hydrol Earth Syst Sci Discuss 9:337–378

    Article  Google Scholar 

  40. Lapworth D, Gooddy D, Allen D, Old G (2009) Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter. J Geophys Res Biogeosci (2005–2012) 114, G00F02

  41. Lautz LK (2010) Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour Res 46, W01509

  42. Lewis J (2012) The application of ecohydrological groundwater indicators to hydrogeological conceptual models. Ground Water 50:679–689

    Article  Google Scholar 

  43. Lischeid G, Kolb A, Alewell C, Paul S (2007) Impact of redox and transport processes in a riparian wetland on stream water quality in the Fichtelgebirge region, southern Germany. Hydrol Process 21:123–132

    Article  Google Scholar 

  44. Lowry CS, Walker JF, Hunt RJ, Anderson MP (2007) Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour Res 43(10)

  45. Lucassen EC, Smolders AJ, Boedeltje G, Munckhof PJJ, Roelofs J (2006) Groundwater input affecting plant distribution by controlling ammonium and iron availability. J Veg Sci 17:425–434

    Article  Google Scholar 

  46. Maltby E, Acreman MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol Sci J 56:1341–1359

    Article  Google Scholar 

  47. Marsh T, Hannaford J (2008) UK Hydrometric register. Centre for Ecology and Hydrology, Wallingford, UK

  48. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  Google Scholar 

  49. McMenamin SK, Hadly EA, Wright CK (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc Natl Acad Sci 105:16988–16993

    Article  Google Scholar 

  50. Megonigal JP, Hines M, Visscher P (2003) Anaerobic metabolism: linkages to trace gases and aerobic processes. Treat Geochem 8:317–424

    Article  Google Scholar 

  51. Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, Hoboken

    Google Scholar 

  52. Musgrave H (2006) Water sources to floodplain wetlands in the Lambourn catchment. Open University, UK

  53. Neal C, Rowland P, Scholefield P, Vincent C, Woods C, Sleep D (2011) The Ribble/Wyre observatory: major, minor and trace elements in rivers draining from rural headwaters to the heartlands of the NW England historic industrial base. Sci Total Environ 409:1516–1529. doi:10.1016/j.scitotenv.2011.01.018

    Article  Google Scholar 

  54. Newbold C, Mountford JO (1997) Water level requirements of wetland plants and animals. English Nature, Peterborough, UK

  55. Old G, Naden P, Rameshwaran P, Acreman M, Baker S, Edwards F, Sorensen J, Mountford O, Gooddy D, Stratford C (2014) Instream and riparian implications of weed cutting in a chalk river. Ecol Eng 71:290–300

    Article  Google Scholar 

  56. Pauli D, Peintinger M, Schmid B (2002) Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic Appl Ecol 3:255–266

    Article  Google Scholar 

  57. Preston CD, Hill MO (1997) The geographical relationships of British and Irish vascular plants. Bot J Linn Soc 124:1–120

    Article  Google Scholar 

  58. Prior H, Johnes P (2002) Regulation of surface water quality in a Cretaceous Chalk catchment, UK: an assessment of the relative importance of instream and wetland processes. Sci Total Environ 282:159–174

    Article  Google Scholar 

  59. Rodwell J (1991) British plant communities, vols 1–5. JNCC, Peterborough, UK

    Google Scholar 

  60. Rosenberry DO, Striegl RG, Hudson DC (2000) Plants as indicators of focused ground water discharge to a northern Minnesota lake. Ground Water 38:296–303

    Article  Google Scholar 

  61. Schmidt C, Conant B Jr, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307

    Article  Google Scholar 

  62. Schot P, Barendregt A, Wassen M (1988) Hydrology of the wetland Naarderemeer: influence of the surrounding area and impact on vegetation. Agric Water Manag 14:459–470

    Article  Google Scholar 

  63. Sinker C (1962) The North Shropshire meres and mosses: a background for ecologists. Headley, Kent, UK

  64. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  65. van Diggelen R, Grootjans A, Wierda A, Burkunk R, Hoogendoorn J (1988) Prediction of vegetation changes under different hydrological scenarios. In: Hydrological basis of ecologically sound management of soil and groundwater. IAHS Publ. no. 202, IAHS, Wallingford, UK, pp 71–80

  66. Voytek EB, Drenkelfuss A, Day‐Lewis FD, Healy R, Lane JW, Werkema D (2013) 1DTempPro: analyzing temperature profiles for groundwater/surface‐water exchange. Ground Water. doi:10.1111/gwat.12051

  67. Wang L, Stuart M, Bloomfield J, Butcher A, Gooddy D, McKenzie A, Lewis M, Williams A (2012) Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrol Process 26:226–239

    Article  Google Scholar 

  68. Wassen M, Barendregt A, Bootsma M, Schot P (1988) Groundwater chemistry and vegetation of gradients from rich fen to poor fen in the Naardermeer (the Netherlands). Vegetatio 79:117–132

    Article  Google Scholar 

  69. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, Chichester, UK

  70. Wheater H, Peach D, Binley A (2007) Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR). Hydrol Earth Syst Sci 11:108–124

    Article  Google Scholar 

  71. Wheeler BD (1999) Water and plants in freshwater wetlands. In: Eco-hydrology: plants and water in terrestrial and aquatic environments. Routledge, London, pp 127–180

  72. Wheeler B, Shaw S, Tanner K (2009) A wetland framework for impact assessment at statutory sites in England and Wales. Environment Agency R&D Technical Report, Environment Agency, Bristol, UK

  73. Wierda A, Fresco L, Grootjans A, Rv D (1997) Numerical assessment of plant species as indicators of the groundwater regime. J Veg Sci 8:707–716

    Article  Google Scholar 

  74. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  75. Younger P (1989) Devensian periglacial influences on the development of spatially variable permeability in the Chalk of southeast England. Q J Eng Geol Hydrogeol 22:343–354

    Article  Google Scholar 

Download references

Acknowledgements

Thanks go to Henry Holbrook for illustration of Fig. 9. Funding for the study was provided by the Natural Environment Research Council (NERC). J. Sorensen, D. Gooddy, A. Newell, B. Marchant and P. Williams publish with the permission of the Executive Director of the British Geological Survey.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew R. House.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 181 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

House, A.R., Sorensen, J.P.R., Gooddy, D.C. et al. Discrete wetland groundwater discharges revealed with a three-dimensional temperature model and botanical indicators (Boxford, UK). Hydrogeol J 23, 775–787 (2015). https://doi.org/10.1007/s10040-015-1242-5

Download citation

Keywords

  • Wetlands
  • Groundwater/surface-water relations
  • Temperature
  • Biological indicator
  • UK