Skip to main content
Log in

Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland

Traceurs chimiques et isotopiques en tant qu’indicateurs des interactions eau souterraine/eau de surface dans le bassin versant d’un lac boréal de Finlande

Trazadores químicos e isotópicos indicadores de la interacción agua subterránea/agua superficial dentro de una cuenca de un lago boreal en Finlandia

揭示芬兰一个北方湖汇水区地下水/地表水相互作用的化学和同位素示踪剂

Traçadores químicos e isotópicos que indicam a interação águas subterrâneas/águas superficiais dentro da bacia hidrográfica de um lago boreal na Finlândia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Stable isotopes (δ 18O, δD), dissolved silica (DSi) concentration and major ion composition were used to indicate groundwater/surface-water interaction between the aquifers, the rivers and a lake in the high-latitude Lake Pyhäjärvi catchment in Finland. Significant differences were recorded in water chemistry between the groundwater and surface waters, especially in the stable isotope composition and DSi concentrations, which could thus be used as tracers. The baseline data on isotopic patterns and hydrogeochemistry in the hydrological cycle were provided by a 1-year monitoring survey in this snow-type catchment area. The proportions of groundwater in the rivers, the lake inshore area and in a groundwater abstraction plant were calculated using stable isotopes and DSi. Two inflowing rivers had distinct differences in their water chemistry. DSi has potential as a tracer in the river environment, whereas stable isotopes were more applicable in the lake environment. Locally, near the shoreline, the effect of discharging groundwater on the lake-water quality could clearly be observed. Furthermore, infiltration of the lake water into the aquifer could be observed near the pumping wells onshore. This infiltration presents a potential risk for the water quality of water supply (intake) wells. Frequent sampling is needed as part of the evaluation of the level of groundwater/surface-water interaction in snow-type catchments in order to estimate the magnitude of seasonal variation. In groundwater/surface-water interaction studies, spring thaw and high-precipitation events could be problematic, in terms of both sampling and interpreting results.

Résumé

Les isotopes stables de l’eau (δ 18O, δD), la concentration en silice dissoute (DSi) et la composition en ions majeurs sont utilisés comme indicateurs des interactions eau souterraine/eau de surface entre les aquifères, les rivières et un lac du bassin de haute latitude du lac Pyhäjärvi en Finlande. Des différences significatives sont enregistrées dans la chimie de l’eau entre les eaux souterraines et les eaux de surface, essentiellement dans la composition isotopique et les concentrations en DSi qui peuvent donc être utilisés comme traceurs. Les données de base des schémas isotopique et de l’hydrogéochimie du cycle hydrologique proviennent d’un suivi d’une année effectué dans le bassin versant influencé par la neige. La part d’eau souterraine dans les rivières, le bassin côtier du lac et à une station de pompage d’eau a été calculée en utilisant les isotopes stables et la DSi. Deux affluents ont des signatures chimiques différentes. Le DSi a un potentiel de traçage plus marqué pour le système environnemental des rivières alors que les isotopes stables sont plus pertinents dans l’environnement lacustre. Localement, proche de la côte, l’effet de la décharge de l’aquifère se marque clairement sur la qualité chimique des eaux du lac. De plus, l’infiltration des eaux du lac dans l’aquifère peut être observé au niveau des puits de pompage dans les terres. This infiltration presents a potential risk for the water quality of water supply (intake) wells. Cette infiltration présente un risque possible sur la qualité des eaux des puits pour l’alimentation en eau potable. Un échantillonnage fréquent est nécessaire dans l’évaluation des interactions eau souterraine/eau de surface dans un bassin influencé par la neige afin d’estimer l’importance des variations saisonnières. Dans les études des interactions eau souterraine/eau de surface, les sources alimentées par la fonte de neige et les fortes précipitations peuvent être problématiques en termes d’échantillonnage et d’interprétation des résultats.

Resumen

Se usaron los isótopos estables (δ 18O, δD), la concentración de sílice disuelta (DSi) y la composición de iones mayoritarios para indicar la interacción agua subterránea / agua superficial entre los acuíferos, los ríos y un lago en la cuenca de altas latitudes del lago Pyhäjärvi en Finlandia. Se registraron diferencias significativas en la calidad química de las aguas subterráneas y superficiales, especialmente en la composición de isótopos estables y en las concentraciones de DSi, que podrían así ser usadas como trazadores. Los datos de línea de base sobre los patrones isotópicos y la hidrogeoquímica en el ciclo hidrológico fueron proporcionados por el monitoreo de un año en esta área de cuenca de tipo nival. Se calcularon las proporciones de agua subterránea en los ríos, en el área costera del lago y en una planta de extracción de agua subterránea usando isótopos estables y DSi. Dos ríos entrantes tuvieron diferencias distintivas en la calidad del agua. La DSi tiene potencial como un trazador en el ambiente del río, mientras los isótopos estables fueron más aplicables en el ambiente del lago. Localmente, cerca de la costa, se pudo observar claramente el efecto de la descarga del agua subterránea sobre la calidad del agua del agua. Además, se observó la infiltración del agua del lago hacia acuífero cerca de los pozos en las márgenes. Esta infiltración presenta un riesgo potencial para la calidad del agua de abastecimiento (consumo). Es necesario un muestreo frecuente como parte de la evaluación de los niveles de la interacción agua subterránea / agua superficial en las cuencas de tipo nival para estimar la magnitud de la variación estacional. En los estudios de la interacción agua subterránea / agua superficial, el deshielo de la primavera y los eventos de alta precipitación podrían ser problemáticos, en términos de los muestreos y de la interpretación de los resultados.

摘要

采用稳定同位素(δ 18O, δD)、溶解二氧化硅(DSi)含量及主要离子组分揭示芬兰高纬度Pyhäjärvi湖汇水区含水层、河流和湖泊之间的地下水、地表水相互作用。水化学成分中,特别是在稳定同位素组分和DSi含量中,记录了地下水和地表水之间的重要差别,因此,这些就可以用作示踪剂。这个积雪类型的汇水区一年监测调查提供了水循环中同位素模式和水文地质化学的基准数据。用稳定同位素和DSi计算了河流、湖泊近岸区和地下水抽取场地下水的比例。两条流入河流中的水化学成分明显不同。DSi在河流环境中具有充当示踪剂的潜力,而稳定同位素更适合于在湖泊环境中充当示踪剂。局部上,在湖岸线附近,可以很清楚地观测到排泄的地下水对湖水质量产生的影响。并且,岸边的抽水井附近可观测到湖水入渗到含水层的情况。这种入渗对供(摄入)水井的水质产生了潜在的风险。作为积雪类型汇水区地下水/地表水相互作用等级评价的一部分,需要经常采样,以估算季节性变化的幅度。在地下水/地表水相互作用研究中,而在采样和解译结果中泉水融化和高强度降水却是个问题。

Resumo

Isótopos estáveis (δ 18O, δD), a concentração de sílica dissolvida (DSi) e a composição iónica principal foram usados para indicar a interação águas subterrâneas/águas superficiais entre os aquíferos, os rios e um lago na bacia hidrográfica do Lago Pyhäjärvi de alta latitude, na Finlândia. Diferenças significativas foram registadas na química da água entre as águas subterrâneas e superficiais, especialmente na composição do isótopo estável e nas concentrações de DSi, que poderiam ser utilizados como traçadores. Os dados de referência sobre padrões isotópicos e hidrogeoquímica no ciclo hidrológico foram fornecidos por uma pesquisa de monitorização de um ano nesta área de bacia hidrográfica em zona de neve. As proporções de águas subterrâneas nos rios, no lago interior e num campo de captação de águas subterrâneas foram calculadas usando isótopos estáveis e DSi. Dois rios afluentes tiveram diferenças distintas na composição química das suas águas. A DSi tem potencial como marcador no ambiente do rio, enquanto isótopos estáveis foram mais aplicáveis no ambiente de lago. Localmente, perto da linha de costa do lago, o efeito da descarga de águas subterrâneas na qualidade da água do lago pôde ser claramente observado. Além disso, a infiltração da água do lago no aquífero pode ser observada perto dos poços de bombeamento em terra. Essa infiltração apresenta um risco potencial para a qualidade da água dos poços de abastecimento. A amostragem frequente é necessária como parte da avaliação do nível de interação águas subterrâneas/águas superficiais em bacias em zonas de neve, a fim de estimar a magnitude da variação sazonal. Em estudos de interação água subterrânea/água superficial, o degelo da primavera e eventos de grande precipitação podem ser problemáticos, tanto em termos de amostragem, como na interpretação dos resultados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Artimo A (2002) Application of flow and transport models to the polluted Honkala aquifer, Säkylä, Finland. Boreal Env Res 7:161–172

    Google Scholar 

  • Asano Y, Uchida T, Ohte N (2003) Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment. Geochim Cosmochim Acta 69:1973–1989

    Article  Google Scholar 

  • Ayenew T, Gebreegziabher Y (2006) Application of a spreadsheet hydrological model for computing the long-term water balance of Lake Awassa, Ethiopia. Hydrol Sci J 51(3):418–431. doi:10.1623/hysj.51.3.418

    Article  Google Scholar 

  • Backman B, Lahermo P, Väisänen U, Paukola T, Juntunen R, Karhu J, Pullinen A, Rainio H, Tanskanen H (1999) The effect of geological environment and human activities on groundwater in Finland: the results of monitoring in 1969–1996. Reports of Geological Survey of Finland 147/1999, GSF, Helsinki

  • Conant B (2001) A PCE plume discharging to a river: investigations of flux, geochemistry and biodegradation in the streambed. PhD Thesis, University of Waterloo, Canada

  • Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42(2):243–257. doi:10.1111/j.1745-6584.2004.tb02671.x

    Article  Google Scholar 

  • Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42(4):774–777

    Article  Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF (1993) Modification of silica biogeochemistry with eutrophication in aquatic systems. Mar Ecol Prog Ser 101:179–192

    Article  Google Scholar 

  • Conley DJ, Stalnacke P, Pitkänen H, Wilander A (2000) The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnol Oceanogr 45:1850–1853

    Article  Google Scholar 

  • Clark ID, Fritz P(1997) Enviromental isotopes in Hydrogeolog. CRC press, Boca Raton, FL

  • Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Ekholm P, Malve O, Kirkkala T (1997) Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhäjärvi (southwest Finland). Hydrobiologia 345(1):3–14. doi:10.1023/A:1002958727707

    Article  Google Scholar 

  • Ekholm P, Valkama P, Jaakkola E, Kiirikki M, Lahti K, Pietola L (2012) Gypsum amendment of soils reduces phosphorus losses in an agricultural catchment. Agric Food Sci 21:279–291

    Google Scholar 

  • Finnish Environmental Administration (2014) Environmental and spatial services (HERTTA), surface-water and groundwater resources, hydrological observations, discharge. https://wwwp2.ymparisto.fi/scripts/oiva.asp. Accessed April 2014

  • Frapporti G (1994) Geochemical and statistical interpretation of the Dutch National Ground Water Quality Monitoring Network. PhD Thesis, Geologica Ultraiectina 115, University of Utrecht, The Netherlands, 119 pp

  • Gao X, Wang Y, Wu P, Guo Q (2010) Trace elements and environmental isotopes as tracer of surface water-groundwater interaction: a case study at Xian’an karst water system, Shanxi Province, northern China. Environ Earth Sci 59:1223–1234. doi:10.1007/s12665-009-0111-8

    Article  Google Scholar 

  • Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the River Seine: observations and modelling. Limnol Oceanogr 40(4):750–765

    Article  Google Scholar 

  • Gibson JJ, Prepas EE, McEachern P (2002a) Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a survey of boreal lakes. J Hydrol 262(1–4):128–144. doi:10.1016/S0022-1694(02)00022-7

    Article  Google Scholar 

  • Gibson JJ, Aggarwal P, Hogan J, Kendall C, Martinelli LA, Stichler W, Rank D, Goni I, Choudhry M, Gat J, Bhattacharya S, Sugimoto A, Fekete B, Pietroniro A, Maurer T, Panarello H, Stone D, Seyler P, Maurice-Bourgoin L, Herczeg A (2002b) Isotope studies in large river basins: a new global research focus. Eos 83(52):613–617. doi:10.1029/2002EO000415

    Article  Google Scholar 

  • Gibson JJ, Edwards TW, Birks SJ, St Amour NA, Buhay WM, McEachern P, Wolfe BB, Peters DL (2005) Progress in isotope tracer hydrology in Canada. Hydrol Process 19(1):303–327. doi:10.1002/hyp.5766

    Article  Google Scholar 

  • Hayashi M, Rosenberry DO (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40(3):309–316. doi:10.1111/j.1745-6584.2002.tb02659.x

    Article  Google Scholar 

  • Hinton MJ, Schiff SL, English MC (1994) Examining the contributions of glacial till water to storm runoff using two- and three-component hydrograph separations. Water Resour Res 30(4):983–993. doi:10.1029/93WR03246

    Article  Google Scholar 

  • Horita J (1990) Stable isotope paleoclimatology of brine inclusions in halite: modeling and applications to Searles Lake, California. Geochim Cosmochim Acta 54(7):2059–2073. doi:10.1016/0016-7037(90)90271-L

    Article  Google Scholar 

  • Hurley JP, Armstrong DE, Kenoyer GJ, Bowser CJ (1985) Ground-water as a silica source for diatom production in a precipitation-dominated lake. Science 227:1576–1578

    Article  Google Scholar 

  • Jayakumar R, Siraz L (1997) Factor analysis in hydrogeochemistry of coastal aquifers: a preliminary study. Environ Geol 31:174–177

    Article  Google Scholar 

  • Karlsson K-P (ed) (1986) Atlas of Finland, folio 132, water. National Board of Survey and Geographical Society of Finland, Helsinki, 31 pp

    Google Scholar 

  • Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15(7):1363–1393. doi:10.1002/hyp.217

    Article  Google Scholar 

  • Kenoyer GJ, Anderson MP (1989) Groundwater’s dynamic role in regulating acidity and chemistry in a precipitation-dominated lake. J Hydrol 109(3–4):287–306. doi:10.1016/0022-1694(89)90020-6

    Article  Google Scholar 

  • Kirkkala T (2014) Long-term nutrient load management and lake restoration: case of Säkylän Pyhäjärvi (SW Finland). PhD Thesis, University of Turku, Finland

  • Kirkkala T, Ventelä A-M, Tarvainen M (2012) Fosfilt filters in an agricultural catchment: a long-term field-scale experiment. Agric Food Sci 21:237–246

    Google Scholar 

  • Korkka-Niemi K (2001) Cumulative geological, regional and site-specific factors affecting groundwater quality in domestic wells in Finland. Monographs of the Boreal Environ. Research 20, The Finnish Environment Institute, Helsinki, 98 pp

  • Korkka-Niemi K, Rautio A, Niemistö P, Karhu J (2011) Hydrogeochemical and isotopic indications of ground water–surface water interaction at Lake Pyhäjärvi, SW Finland. In: Schirmer M, Hoehn E, Vogt T (eds) GQ2010: groundwater quality management in a rapidly changing world. IAHS Publications 342, IAHS Wallingford, UK, pp 423–426

  • Kortelainen NM (2007) Isotopic fingerprints in surficial waters: stable isotope methods applied in hydrogeological studies. PhD Thesis, University of Helsinki, Finland

  • Kortelainen N, Gustavsson N (2004). Virttaankankaan pohjaveden ja Kokemäenjoen jokiveden hapen ja vedyn isotooppikoostumusseuranta: seossuhteiden virhetarkastelu simuloinneilla [The oxygen and hydrogen isotope ratio in Virttaankangas groundwater and Kokemäenjoki river water monitoring program]. Publication of Turun Seudun Vesi Oy no. 1/2004, TSV, Turku, Finland

  • Kortelainen NM, Karhu JA (2004) Regional and seasonal trends in the oxygen and hydrogen isotope ratios of Finnish groundwaters: a key for mean annual precipitation. J Hydrol 285(1–4):143–157. doi:10.1016/j.jhydrol.2003.08.014

    Article  Google Scholar 

  • Kortelainen NM, Karhu JA (2009) Geochemical and isotopic evolution of high-pH groundwater in a carbonate bearing glacigenic aquifer, SW Finland. Hydrol Res 40(1):19–31

    Article  Google Scholar 

  • Kortelainen NM, Korkeakoski PJ, Karhu JA (2007) Origin of the calcite in the glacigenic Virttaankangas complex. Bull Geol Soc Finl 79:5–15

    Google Scholar 

  • Krabbenhoft DP, Anderson MP, Bowser CJ, Valley J (1990) Estimating groundwater exchange with Sparkling Lake, Wisconsin, 1: use of the stable isotope mass-balance method. Water Resour Res 26(10):2445–2453. doi:10.1029/WR026i010p02445

    Google Scholar 

  • Lahermo P, Väänänen P, Tarvainen T, Salminen R (1996) Geochemical atlas of Finland, part 3: environmental geochemistry—stream waters and sediments. Geological Survey of Finland, Helsinki

  • Lahermo P, Tarvainen T, Hatakka T, Backman B, Juntunen R, Kortelainen N, Lakomaa T, Nikkarinen M, Vesterbacka P, Väisänen U, Suomela P (2002) Tuhat kaivoa: Suomen kaivovesien fysikaalis–kemiallinen laatu vuonna 1999 [One thousand wells: the physical–chemical quality of Finnish well waters in 1999]. Report of Investigation 155, Geological Survey of Finland, Espoo

    Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22(1):140–147. doi:10.4319/lo.1977.22.1.0140

    Article  Google Scholar 

  • Lenters JD (2004) Trends in the Lake Superior water budget since 1948: a weakening seasonal cycle. J Great Lakes Res 30(1):20–40. doi:10.1016/S0380-1330(04)70375-5

    Article  Google Scholar 

  • Mäkinen J (2003) The development of depositional environments within the interlobate Säkylänharju-Virttaankangas glaciofluvial complex in SW Finland. Ann Acad Sci Fenn Geol-Geogr 165:1–65

    Google Scholar 

  • Malve O, Ekholm P, Kirkkala T, Huttula T, Krogerus K (1994) Nutrient load and trophic level of Lake Pyhäjärvi (Säkylä): a study based on the water quality data for 1980–1992 using flow and water quality models (in Finnish with English abstract). Publication of National Board of Waters and the Environment, series A181, National Board of Waters and the Environment, Helsinki,

    Google Scholar 

  • Marchand G (2001) Groundwater-surface water interaction and nitrate origin in municipal water supply aquifers, San José, Costa Rica. MSc Thesis, University of Calgary, Canada

  • McConnaughey TA, LaBaugh JW, Rosenberry DO, Striegl RG, Reddy MM, Schuster PF, Carter VC (1994) Carbon budget for a groundwater fed lake: calcification supports summertime photosynthesis. Limnol Oceanogr 39(6):1319–1332

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84(C8):5029–5033. doi:10.1029/JC084iC08p05029

    Article  Google Scholar 

  • Mook WG (ed) (2001) Environmental isotopes in the hydrological cycle: principles and applications, vol III: surface water. IHP-V, Technical Documents in Hydrology no. 39, UNESCO, Paris

  • Neal C, Neal M, Reynolds B, Maberly SC, May L, Ferrier RC, Smith J, Parker JE (2005) Silicon concentrations in UK surface waters. J Hydrol 304(1–4):75–93. doi:10.1016/j.jhydrol.2004.07.023

    Article  Google Scholar 

  • Nõges P, Nõges T, Adrian R, Weyhenmeyer GA (2008) Silicon load and the development of diatoms in three river-lake systems in countries surrounding the Baltic Sea. Hydrobiogia 599: 67–76 doi:10.1007/s10750-007-9194y

  • Nystén T (1998) Transport processes of road salt in quaternary formations. In: Nystén T, Suokko T (eds) Deicing and dustbinding: risk to aquifers. Nordic Hydrological Programme, NHP report no. 43, Proc. of an international symposium, Helsinki, October 1996, KOHYNO, Copenhagen

  • Palko J, Weppling K (1994) Lime requirement experiments in acid sulphate soils. Acta Agric Scand 44(3):149–156. doi:10.1080/09064719409410238

    Google Scholar 

  • Pickering RJ (1962) Some leaching experiments on three quartz-free silicate rocks and their contribution to an understanding of laterization. Econ Geol 57(8):1185–1206

    Article  Google Scholar 

  • Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karlsson P, Ruuhela R (2012) Climatological statistics of Finland 1981–2010. Report no. 2012:1. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Punkari M (1980) The ice lobes of the Scandinavian ice sheet during the deglaciation of Finland. Boreas 9:307–310

    Article  Google Scholar 

  • Ranta E, Rita H, Kouki J (1991) Biometria, tilastotiedettä ekologeille [Biometry: statistics for ecologists]. Helsinki University Press, Helsinki

    Google Scholar 

  • Räsänen M, Salonen V-P, Salo J, Walls M, Sarvala J (1992) Recent history of sedimentation and biotic communities in Lake Pyhäjärvi, SW Finland. J Paleolimnol 7(2):107–126. doi:10.1007/BF00196866

    Article  Google Scholar 

  • Rautio A, Korkka-Niemi K (2011) Characterization of groundwater–lake water interactions at Lake Pyhäjärvi, SW Finland. Boreal Environ Res 16:363–380

    Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and log-normal data distribution in geochemistry: death of the myth—consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39(9):1001–1014. doi:10.1007/s002549900081

    Article  Google Scholar 

  • Rock NMS (1988) Numerical geology: a source guide, glossary and selective bibliography to geological uses of computers and statistics numerical geology. Lecture Notes in Earth Sciences, vol 18. Springer, Berlin, 427 pp

  • Rosenberry DO, LaBaugh JW (2008) Field techniques for estimating water fluxes between surface water and ground water. US Geol Surv Techniques and Methods 4-D2, 128 pp

  • Rosenberry DO, Dean WE, Duff JH, LaBaugh JW, Reddy MM, Schuster PS, Striegl RG, Triska FJ, Winter TC (2003) Exchange of water, solutes, and nutrients at the sediment-water interface affects a northern Minnesota watershed at multiple scales. In: Proceedings of The First Interagency Conference on Research in the Watersheds, US Department of Agriculture, Agricultural Research Service, Benson, AZ, October 2003, pp 468–473

  • Rutledge AT (1998) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: update. US Geol Surv Water-Resour Invest Rep 98–4148

  • Saarinen T, Vuori K-M, Ala-Saarela E, Kløve B (2010) Long-term trends and variation of acidity, CODMn and colour in coastal rivers of western Finland in relation to climate and hydrology. Sci Total Environ 408(21):5019–5027. doi:10.1016/j.scitotenv.2010.07.009

    Article  Google Scholar 

  • Saarnisto M, Salonen V-P (1995) Glacial history of Finland. In: Ehlers J, Kozarski S, Gibbard PL (eds) Glacial deposits in north-east Europe. Balkema, Rottemdam, The Netherlands

    Google Scholar 

  • Sarvala J, Heminen H, Auvinen H (1998) Portrait of a flourishing freshwater fishery: Pyhäjärvi, a lake in SW-Finland. Boreal Environ Res 3:329–345

    Google Scholar 

  • Scanlon TM, Raffensperger JP, Hornberger GM (2001) Modeling transport of dissolved silica in a forested headwater catchment: implications for defining the hydrochemical response of observed flow pathways. Water Resour Res 37(4):171–1082. doi:10.1029/2000WR900278

    Article  Google Scholar 

  • Schneider RL, Negley TL, Wafer C (2005) Factors influencing groundwater seepage in a large, mesotrophic lake in New York. J Hydrol 310(1–4):1–16. doi:10.1016/j.jhydrol.2004.09.020

    Article  Google Scholar 

  • Schuster PF, Reddy MM, LaBaugh JW, Parkhurst RS, Rosenberry DO, Winter TC, Antweiler RC, Dean WE (2003) Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in north central Minnesota. Hydrol Process 17(4):823–838. doi:10.1002/hyp.1211

    Article  Google Scholar 

  • Schwalb A, Burns SJ, Kelts K (1999) Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano Lakes. Palaeogeogr Palaeoclimatol Palaeoecol 148(1–3):153–168. doi:10.1016/S0031-0182(98)00181-3

    Article  Google Scholar 

  • Sinokrot BA, Stefan HG, McCormick JH, Eaton JG (1995) Modeling of climate change effects on stream temperatures and fish habitats below dams and near groundwater inputs. Climate Change 30(2):181–200. doi:10.1007/BF01091841

    Article  Google Scholar 

  • Soveri J, Mäkinen R, Peltonen K (2001) Pohjaveden korkeuden ja laadun vaihtelusta Suomessa 1975–1999 [Changes in groundwater levels and quality in Finland in 1975–1999]. Publication no. 420, The Finnish Environment Institute, Helsinki

  • Tarvainen M, Ventelä A-M (2007) Pyhäjärven suojelutyö 2000–2006 [Protection work of Lake Pyhäjärvi in 2000–2006]. Series B no. 14, Publications of Pyhäjärvi Institute, Eura, 84 pp

  • Ventelä A-M, Tarvainen M, Helminen H, Sarvala J (2007) Long-term management of Pyhäjärvi (southwest Finland): eutrophication, restoration—recovery? Lake Reserv Manag 23(4):428–438. doi:10.1080/07438140709354028

    Article  Google Scholar 

  • Ventelä A-M, Kirkkala T, Lendasse A, Tarvainen M, Helminen H, Sarvala J (2010) Climate-related challenges in long-term management of Säkylän Pyhäjärvi (SW Finland). Hydrobiologia 660(1):49–58. doi:10.1007/s10750-010-0415-4

    Article  Google Scholar 

  • Wiebe A (2012) Quantifying the groundwater component within the water balance of a large lake in a glaciated watershed: Lake Pyhäjärvi, SW Finland. MSc Thesis, Univ. of Waterloo, Canada, 112 pp. http://hdl.handle.net/10012/6490. Accessed 19 May 2014

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139

  • Zacharias I, Dimitriou E, Koussouris T (2003) Estimating groundwater discharge into a lake through underwater springs by using GIS technologies. Environ Geol 44(7):843–851. doi:10.1007/s00254-003-0829-7

    Article  Google Scholar 

Download references

Acknowledgements

The research is a collaboration between the University of Helsinki and Pyhäjärvi Institute, funded by the Maa- ja Vesitekniikan Tuki Foundation and the K.H. Renlund Foundation. We thank Professors Bjørn Kløve and Veli-Pekka Salonen for constructive comments and suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Rautio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautio, A., Korkka-Niemi, K. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. Hydrogeol J 23, 687–705 (2015). https://doi.org/10.1007/s10040-015-1234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1234-5

Keywords

Navigation