Skip to main content

Advertisement

Log in

The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

L’impact thermique des systèmes de stockage d'énergie thermique en aquifère (ATES): une étude de cas en Hollande, combinant la surveillance et la modélisation

El impacto térmica de sistemas de almacenamiento de energía térmica en acuíferos (ATES): un caso de estudio en los Países Bajos, combinando monitoreo y modelado

含水层热能储存系统的热影响:伴有监测和模拟的一个荷兰研究实例

O impacte termal dos sistemas de armazenamento de energia termal em aquíferos (AETA): um estudo de caso na Holanda, combinando monitorização e modelação

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2015

Abstract

Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

Résumé

Les résultats présentés ici sont ceux d'une étude d’impact thermique complète d’un système de stockage d’énergie thermique en aquifère (ATES) à Bilthoven en Hollande. L'étude a impliqué la surveillance de l'impact thermique et la modélisation de l'évolution tridimensionnelle de la température de la couche aquifère et des unités sus- et sous-jacentes. Une particulière attention a été prêtée à l'irrégularité de la température de fond qui change latéralement et verticalement dans la couche aquifère. Deux modèles ont été appliqués avec différents niveaux du détail concernant les conditions initiales et l'hétérogénéité des propriétés hydrauliques et thermiques: un modèle d'hétérogénéité détaillé qui interprète la distribution latérale et verticale de la température de manière plus réaliste, et un modèle simplifié qui représente le système aquifère avec seulement un nombre limité de couches homogènes. L’hétérogénéité détaillée s'est avérée importante pour modéliser de manière précise la distribution verticale des températures impactée par l’ATES et les températures maximum et minimum dans l’aquifère de stockage, ainsi que l'étendue spatiale des panaches thermiques. Le modèle d'hétérogénéité de détail a eu comme conséquence de plus grands secteurs thermiquement affectés et de plus grandes anomalies de température que dans le modèle simplifié. Les modèles ont prouvé que des données dispersées et rares de suivi des températures induites par l’ATES peuvent être interprétées d'une manière utile à l’aide de modèles d’eaux souterraines et du transport de la chaleur avec comme résultat une évaluation réaliste de l'impact thermique.

Resumen

Se presentan los resultados de un estudio integral del impacto térmico en un sistema de almacenamiento de energía térmica en un acuífero (ATES) en Bilthoven, Países Bajos. El estudio implicó el monitoreo del impacto térmico y el modelado tridimensional de la evolución de la temperatura del almacenamiento en el acuífero y en las unidades supra y subyacentes. Se prestó especial atención a la falta de uniformidad de la temperatura de fondo que varía lateral y verticalmente en el acuífero. Se aplicaron dos modelos con diferentes niveles de detalle considerando las condiciones iniciales y la heterogeneidad de las propiedades hidráulicas y térmicas: un modelo de heterogeneidad a escala fina que interpreta la distribución vertical y lateral de la temperatura de manera más realista, y un modelo simplificado que representa el sistema acuífero con sólo un número limitado de capas homogéneas. La heterogeneidad a escala fina mostró ser importante para modelar con precisión la distribución vertical del impacto de la temperatura del ATES y las temperaturas mínimas y máximas en el almacenamiento del acuífero, y la extensión espacial de la pluma térmica. El modelo a escala fina de la heterogeneidad resultó en áreas térmicamente afectadas más grandes y anomalías de temperatura mayores que el modelo simplificado. Los modelos mostraron que los datos de monitoreo dispersos y escasos de temperaturas inducidas del ATES pueden ser interpretados en una forma útil para el modelado del transporte de agua subterránea y del calor, lo que resulta en una evaluación realista del impacto térmico.

抽象

摘要:本文论述了荷兰Bilthoven一个含水层热能储存系统综合热影响的研究结果。研究包括对储存含水层及上覆和下伏单元进行热影响监测和三维温度演化模拟。特别注重背景温度的不均匀性,背景温度在含水层垂向和横向上变化很大。对于初始条件及水力和热特性的不均匀性,根据不同水平的详细情况,采用了两个模型:一个是能够更现实地分析横向和垂向温度分布的小尺度不均匀性模型,另一个是只能描述含水层系统有限若干个均匀层的简化模型。小尺度不均匀性显示其在准确模拟含水层热能储存影响的垂直温度分布、储存含水层内最大和最小温度以及热能羽空间分布中非常重要。与简化模型相比,小尺度不均匀性模型的结果显示出较大的热影响区域及较大的温度异常。模型显示,含水层热能储存感应温度方面零星、稀有的监测资料可以通过地下水和热量传输模拟以有益的方式得到解译,从而对热效果进行实事求是的评价.

Resumo

São apresentados os resultados de um estudo pormenorizado de impactes termais num sistema de armazenamento de energia termal num aquífero (AETA) em Bilthoven, na Holanda. O estudo envolveu a monitorização do impacte termal e a modelação tridimensional da evolução da temperatura no interior do aquífero e nas unidades superior e inferior. Uma atenção especial foi dada à não uniformidade da temperatura de base, a qual varia lateral e verticalmente no aquífero. Dois modelos foram aplicados, com diferentes níveis de pormenor em relação às condições iniciais e à heterogeneidade das propriedades hidráulicas e termais: um modelo heterogéneo de escala fina, que interpretou a distribuição lateral e vertical da temperatura mais realisticamente, e um modelo simplificado, que representou o sistema aquífero com apenas um número limitado de camadas homogéneas. A heterogeneidade de escala fina mostrou-se importante para modelar com precisão o impacte da distribuição de temperatura vertical no AETA, as temperaturas máximas e mínimas no aquífero e a extensão espacial das plumas termais. O modelo heterogéneo de escala fina resultou em maiores áreas termalmente impactadas e maiores anomalias de temperatura do que o modelo simplificado. Os modelos mostraram que os dados de monitorização dispersos e escassos das temperaturas induzidas pelo AETA podem ser interpretados de um modo útil por modelação de água subterrânea e de transporte de calor, resultando numa avaliação realista dos impactes termais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allen DM, Bayer P, Ferguson G, Blum PH (2014) Preface: Hydrogeology of shallow thermal systems. Hydrogeol J 22:1–6. doi:10.1007/s10040-013-1082-0

    Article  Google Scholar 

  • Bonte M, Stuyfzand PJ, Van Den BG (2010) The effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from the Netherlands. Water Sci Technol 63(9):1922–1931

    Article  Google Scholar 

  • Bonte M, Stuyfzand PJ, Hulsmann A, Van Beelen P (2011a) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and the EU. Ecol Soc 16(1):22

  • Bonte M, Stuyfzand PJ, Van Den Berg G (2011b) The effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from the Netherlands. Water Sci Technol 63(9):1922–1931

    Article  Google Scholar 

  • Bonte M, van Breukelen BM, Stuyfzand PJ (2013) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res 4(47):5088–5100. doi: 10.1016/j.watres.2013.05.049

  • Bridger DW, Allen DM (2010) Heat transport simulations in a heterogeneous aquifer use for aquifer thermal energy storage (ATES). Can Geotech J 47:96–115

    Article  Google Scholar 

  • Bridger DW, Allen DM (2014) Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system. Hydrogeol J 22(2014):233–250. doi:10.1007/s10040-013-1049-1

    Article  Google Scholar 

  • Buscheck TA, Doughty C, Tsang CF (1983) Prediction and analysis of a field experiment on a multilayered aquifer thermal energy storage system with strong buoyancy flow. Water Resour Res 19(5):1307–1315

    Article  Google Scholar 

  • CBS (2011) Hernieuwbare energie in Nederland 2010 [Renewable energy in the Netherlands 2010]. Centraal Bureau voor de Statistiek, The Hague

    Google Scholar 

  • Cermák V, Safanda J, Dedecek P, Kresl M (2012) Ground-air temperature coupling: results of long-term temperature-time monitoring at the experimental borehole site at Prague (The Czech Republic). EGU General Assembly 2012, Vienna, 22–27 April 2012, 7,382 pp

  • Commissie Bescherming Waterwingebieden (1980) Richtlijnen en aanbevelingen voor de bescherming van waterwingebieden [Guidelines for the protection of drinking-water sources and recommendations]. Commissie Bescherming Waterwingebieden, VEWIN-RID, Rijswijk, The Netherlands

  • Dwyer TE, Eckstein Y (1987) Finite-element simulation of low-temperature, heat-pump-coupled, aquifer thermal energy storage. J Hydrol 85:19–38

    Article  Google Scholar 

  • Ferguson G, Woodbury AD (2004) Subsurface heat flow in an urban environment. J Geophys Res 109:B02402. doi:10.1029/2003JB002715

    Google Scholar 

  • Ferguson G, Woodbury AD (2007) Urban heat island in the subsurface. Geophys Res Lett 34:L23713. doi:10.1029/2007GL032324

    Article  Google Scholar 

  • Geudens PJJG (2010) Dutch drinking water statistics 2008. Association of Dutch Drinking Water Companies (VEWIN), Rijswijk, The Netherlands

    Google Scholar 

  • Glover P (2008) Petrophysique [Petrophysics]. MSc course notes, GLG-66565, Département de Géologie et de Génie Géologique, Université Laval, Quebec City, Canada

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59(2013):914–925

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92

  • Hecht-Méndez J, Molina-Giraldo N, Blum P, Bayer P (2010) Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Ground Water 48(5):741–756

    Article  Google Scholar 

  • Hermans T, Vandenbohede A, Lebbe L, Nguyen F (2012) A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. Geophysics 77(1):11–21

    Article  Google Scholar 

  • Hermans T, Nguyen F, Tanguy R, Revil A (2014) Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies 2014(7):5083–5118. doi:10.3390/en7085083

    Article  Google Scholar 

  • IF Technology BV (2007) Koude/warmteopslag in de praktijk, Meetgegevens van 67 projecten [Cold/heat storage in practice: monitoring data from 67 projects]. IF Technology, Arnhem, The Netherlands

  • Kannberg LD (1982) Underground energy storage program: 1981 annual report, vol II. Technical summaries, Pacific Northwest Lab, Richland, WA. doi:10.2172/5327615

  • Kersten MS (1949) Thermal properties of soils. Bulletin 28. Engineering Experiment Station, University of Minnesota, Minneapolis, MN

    Google Scholar 

  • KNMI (2012) Klimaatdesk [Climate data desk]. http://www.knmi.nl/klimatologie/uurgegevens/. Accessed 6 March 2012

  • Kooi H (2008) Spatial variability in subsurface warming over the last three decades: insight from repeated borehole temperature measurements in the Netherlands. Earth Planet Sci Lett 270:86–94

    Article  Google Scholar 

  • Langevin CD, Thorne DT Jr, Dausman AM, Sukop MC, Guo W (2008) SEAWAT Version 4: a computer program for simulation of multi-species solute and heat transport. US Geological Survey Techniques and Methods, book 6, chap A22, US Geological Survey, Reston, VA, 39 pp

  • Larionov VV (1969) Borehole radiometry. Nedra, Moscow

    Google Scholar 

  • Lee KS (2013) Aquifer thermal energy storage. In: Underground thermal energy storage. Springer, London, pp 59–93

  • Lo Russo S, Gnavi L, Roccia E, Taddia G, Verda V (2014) Groundwater heat pump (GWHP) system modeling and thermal affected zone (TAZ) prediction reliability: influence of temporal variations in flow discharge and injection temperature. Geothermics 51:103–112

    Article  Google Scholar 

  • Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark, Brock DP (2012) Biology of microorganisms, 13th edn. Pearson, San Francisco

  • Makowski MW, Mochlinski K (1956) An evaluation of two rapid methods of assessing the thermal resistivity of soils. Proc Inst Electrical Eng, Lond 103(Part A):53–70

  • Mann ME, Schmidt GA (2003) Ground vs. surface air temperature trends: implications for borehole surface temperature reconstructions. Geophys Res Lett 30 (12):1607. doi:10.1029/2003GL017170

  • Mendizabal I, Stuyfzand PJ, Wiersma A (2011) Hydrochemical system analysis of public supply well fields, to reveal quality patterns in drinking water resources. Hydrogeol J 19:83–100

    Article  Google Scholar 

  • Molson JW, Frind EO, Palmer CD (1992) Thermal energy storage in an unconfined aquifer: 2. model development, validation, and application. Water Resour Res 28(10):2857–2867

    Article  Google Scholar 

  • Palmer CD, Blowes DW, Frind EO, Molson JW (1992) Thermal energy storage in an unconfined aquifer: 1. field injection experiment. Water Resour Res 28(10):2845–2856. doi:10.1029/92WR01471

    Article  Google Scholar 

  • Papadopulos SS, Larson SP (1978) Aquifer storage of heated water, part II: numerical simulation of field results. Ground Water 16(6):242–248

    Article  Google Scholar 

  • Pollack HN, Huang SP (2000) Climate reconstruction from subsurface temperatures. Annu Rev Earth Planet Sci 28:339–365

    Article  Google Scholar 

  • Province of Utrecht (2009) Grondwaterwet: wijzigingsvergunning grondwateronttrekking KWO RIVM Bilthoven [Groundwater law: change of groundwater abstraction license ATES system RIVM Bilthoven]. Province of Utrecht, Utrecht, The Netherlands

  • Province of Utrecht (2013) Grondwaterbeschermingsgebieden [Groundwater protection areas].Province of Utrecht, Utrecht, The Netherlands. https://www.provincie-utrecht.nl/loket/kaarten/geo/artikel-0/#backlink. Accessed 5 May 2013

  • Rijksgebouwendienst (2012) Buildings catalogue Central Government Real Estate Agency. Rijksgebouwendienst, The Hague. http://192.113.208.81/Catalogus/objectview/tabularview.html?siteId=509 . Accessed 23 September 2012

  • Royal Haskoning (2007) Effectenstudie warmte/koude-opslag Cohengebouw RIVM te Bilthoven. Definitief rapport 9S7900 [Impact study of heat/cold storage, Cohen building RIVM, Bilthoven. Final report 9S7900]. Royal Haskoning, Groningen, The Netherlands

  • Shepherd RG (1989) Correlations between permeability and grain size. Ground Water 27(5):633–638

    Article  Google Scholar 

  • Sommer WT, Doornenbal PJ, Drijver BC, Gaans PFM, Leusbrock I, Grotenhuis JTC, Rijnaarts HHM (2014) Thermal performance and heat transport in aquifer thermal energy storage. Hydrogeol J 22:263–279. doi:10.1007/s10040-013-1066-0

    Article  Google Scholar 

  • Stauffer F, Bayer P, Blum P, Molina Giraldo N, Kinzelbach W (2013) Thermal use of shallow groundwater. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah-Siakwan S, Kawashima S (1999) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1. an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. J Water Resour Res 35(5):1507–1517

    Article  Google Scholar 

  • Thorne DT Jr, Langevin CD, Sukop MC (2006) Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT. C R Geosci 32:1758–1768

    Article  Google Scholar 

  • TNO Geologische Dienst Nederland (2012a) DINOLoket. https://www.dinoloket.nl/ondergrondgegevens. Accessed 2 January 2012

  • TNO Geologische Dienst Nederland (2012b) DINOLoket. http://www2.dinoloket.nl/nl/DINOLoket.html. Accessed 10 January 2012

  • TNO Geologische Dienst Nederland (2012c) DINOLoket. http://www2.dinoloket.nl/nl/DINOMap.html. Accessed 13 January 2012

  • TNO Geologische Dienst Nederland (2013) DINOLoket. https://www.dinoloket.nl/ondergrondmodellen. Accessed 13 March 2013

  • Tsang CF (1978) Aquifer thermal energy storage. Institute of Gas Technology Symposium on Advanced Technologies for Storing Energy, Chicago, IL, July 10–13, 1978

    Google Scholar 

  • Tsang CF, Buscheck T, Doughty C (1981) Aquifer thermal energy storage: a numerical simulation of Auburn University field experiments. Water Resour Res 17(3):647–658

    Article  Google Scholar 

  • Tyler SW, Selker JS, Hausner MB, Hatch CE, Torgersen T, Thodal CE, Schladow SG (2009) Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour Res 45:W00D23

  • Vandenbohede A, Louwyck A, Lebbe L (2009) Conservative solute versus heat transport in porous media during push–pull tests. Transp Porous Media 76:265–287

    Article  Google Scholar 

  • Vandenbohede A, Hermans T, Nguyen F, Lebbe L (2011) Shallow heat injection and storage experiment: heat transport simulation and sensitivity analysis. J Hydrol 409(2011):262–272

    Article  Google Scholar 

  • Vitens (2012) Waterkwaliteit Utrecht [Water quality data Utrecht]. http://www.vitens.nl/overvitens/water/waterkwaliteit/Paginas/Overzicht-Utrecht.aspx. Accessed 23 September 2012

  • Voss CI (1984) A finite-element simulation model for saturated–unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. US Geol Surv Water Resour Invest Rep 84-4369

  • Wallenstein MD, Hall EK (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109:35–47

    Article  Google Scholar 

  • Winsauer WO, Shearin HM Jr, Masson PH, Williams M (1952) Resistivity of brine-saturated sands in relation to pore geometry. Am Assoc Pet Geol Bull 36(2):253–277

    Google Scholar 

  • Witte HJL, van Gelder GJ, Spitler JD (2002) In situ measurement of ground thermal conductivity: the Dutch perspective. ASHRAE Trans 108(1):263–272

    Google Scholar 

  • Wuijts S, Schijven JF, van der Aa NGFM, Dik HHJ, Versluijs CW, van Wijnen HJ (2007) Bouwstenen Leidraad Grondwaterbescherming, RIVM rapport 734301029/2007 [Building block guidelines to groundwater protection, RIVM report 734301029/2007]. RIVM, Bilthoven, The Netherlands

    Google Scholar 

  • Xue Y, Xie C, Li Q (1990) Aquifer thermal energy storage: a numerical simulation of field experiments in China. Water Resour Res 26(10):2365–2375. doi:10.1029/WR026i010p02365

    Article  Google Scholar 

  • Zog GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61(2):475–481

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in the cooperation framework of Wetsus, the centre of excellence for sustainable water technology (www.wetsus.nl). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the European Union Regional Development Fund, the Province of Fryslân, and the Northern Netherlands Provinces. The authors would like to thank the participants of the research theme “Interaction of Natural Systems” for their fruitful discussions and their financial support. Fieldwork at the RIVM site would not have been possible without the co-operation of the RIVM and in particular Dr. Patrick van Beelen, who is gratefully thanked for his assistance. Matthijs Bonte is thanked for his co-operation in the fieldwork and at the office, for discussions and for providing chemical monitoring data. The KWR Watercycle Research Institute (KWR) is thanked for facilitating the research. We wish to thank two anonymous reviewers for their constructive remarks and questions, which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Visser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visser, P.W., Kooi, H. & Stuyfzand, P.J. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling. Hydrogeol J 23, 507–532 (2015). https://doi.org/10.1007/s10040-014-1224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1224-z

Keywords

Navigation