Abstract
The exchange rate between seawater and groundwater in a tidal flat was investigated at Laizhou Bay, China, where there are large-scale seepage faces with horizontal extension of several hundred meters developed during low tides. Taking into account the effects of seepage face and density, a simple and efficient method for estimating seawater–groundwater exchange rate is proposed, based on field measurements of groundwater hydraulic head, temperature and salinity. First, the exchange rate at each well was obtained using the generalized Darcy’s law, then the results were interpolated and integrated along the whole transect. The total submarine groundwater discharge (SGD) and inflow were estimated to be 8.8 and 15.3 m3 d−1 m−1, respectively. The spatial distributions of SGD and inflow were different from those of sandy or gravel beaches possibly owing to the low-permeability sediment (silty sand with mud), very gentle slope, and the large-scale seepage faces. A freshwater discharge tube was identified near the low-tide line, as evidenced by significant increase in outflow and low salinity of groundwater observed there. The SGD from the seepage faces accounted for ∼21 % of the total SGD. The outflow rate that occurred from the seepage faces, and the ratio of the outflow from the seepage faces to the total outflow, decreased seaward significantly and monotonically.
Résumé
La vitesse d’échange entre eau de mer et eaux souterraines a été étudiée dans la Baie de Laizou, Chine, où à marée basse des surfaces d’échange d’une extension horizontale de plusieurs centaines de mètres se développent. Considérant les effets des surfaces d’échange et leur densité, une méthode simple et efficace d’estimation de la vitesse de transfert entre eau de mer et eaux souterraines est proposée, basée sur des mesures de terrain: charges hydrauliques des eaux souterraines, température et salinité. La vitesse de transfert a été obtenue en utilisant la généralisation de la loi de Darcy dans chaque puits, puis les résultats sont interpolés et intégrés le long d’une coupe dans sa globalité. La décharge sous-marine d’eaux souterraines (DSES) et le flux entrant ont été estimés à 8.8 et 15.3 m3 j−1 m−1, respectivement. La distribution spatiale des DSES et des flux entrants diffère selon la nature des plages, sableuses ou graveleuses, probablement en raison de la faible conductivité hydraulique des sédiments (sable silteux argileux), de la pente très douce et de la dimension des surfaces d’échange. Un chenal de décharge d’eau douce a été identifié près de la ligne des marées basses, caractérisé par l’augmentation du flux sortant et par la faible salinité des eaux souterraines. La DSES des surfaces d’échange compte pour ∼21 % de la DSES totale. Le débit du flux sortant qui prend place au niveau des surfaces d’échange, et le rapport entre le débit sortant des surfaces d’échange et le débit total de la décharge, décroît en direction de la mer de manière significative et monotone.
Resumen
Se investigó la tasa de intercambio entre el agua de mar y agua subterránea en una planicie mareal de Laizhou Bay, China, donde existen fases de filtración en gran escala con una extensión horizontal de varios cientos de metros desarrollados durante las bajamares. Teniendo en cuenta el efecto de la fase de filtración y la densidad, se propuso un método simple y eficiente para la estimar la tasa de intercambio entre agua de mar y agua subterránea, basado en mediciones de campo de carga hidráulica, temperatura y salinidad del agua subterránea. En primer lugar, la tasa de intercambio en cada pozo se obtuvo usando la ley de Darcy generalizada, luego los resultados fueron interpolados e integrados a lo largo de la transecta completa. La descarga submarina total de agua subterránea y el flujo entrante fue estimado en 8.8 y 15.3 m3 d−1 m−1, respectivamente. La distribución espacial de SGD y el flujo entrante fueron diferentes en playas arenosas de aquellos relativos a gravosas posiblemente debido a la baja permeabilidad de los sedimentos (arenas limosas con fango), muy baja pendiente, y fases de filtración en gran escala. Una descarga de agua dulce fue identificada cerca de la línea de bajamar, como lo evidenció un aumento significativo del flujo saliente y la baja salinidad allí observada. El SGD a partir de las fases de infiltración explicaron alrededor del ∼21 % de la SGD total. La tasa del flujo saliente se evidencia a partir de las fases de filtración, y la relación del flujo saliente de las fases de filtración al flujo total, decrecieron significativa y monótonamente hacia el mar.
摘要
调查了中国莱州湾一个潮汐滩地海水和地下水之间的交换率, 这里有大规模的渗透面, 在低潮期间水平延伸达几百米。考虑到渗透面和密度的影响, 根据地下水水头、温度和盐度的野外测量结果, 提出了一种简单和有效的估测海水-地下水交换率的方法。首先, 采用广义的达西定律获取了每个井的交换率, 然后沿整个横断面对结果进行内推和整合。估测总的海底地下水排泄量 (SGD) 和流入量分别为8.8 和 15.3 m3 d−1 m−1。可能由于沉积物透水性低、坡度平缓及大规模的渗透面, 总的海底地下水排泄量和流入量的空间分布与砂质海滩或砂砾海滩的不同。在低潮线附近确定有淡水排泄管道, 因为在那里观测到流出量显著增加, 并且地下水的盐度很低。渗透面流出来的海底地下水排泄量占总海底地下水排泄量的∼21%。渗透面的流出量及渗透面流出量和总流出量的比值向海方向单调、显著地降低。
Resumo
Foram investigadas as taxas de permuta entre água marinha e água superficial numa planície de maré da Baía de Laizhou, na China, onde existem interfaces de percolação de larga escala com extensões horizontais de várias centenas de metros a desenvolverem-se durante as marés baixas. Considerando os efeitos da interface de percolação e da densidade, é proposto um método simples e eficiente de estimação das taxas de permuta água marinha-água subterrânea, baseado em medições de campo dos níveis piezométricos, da temperatura e da salinidade. Primeiro, foi obtida a taxa de permuta em cada poço, com base na lei de Darcy; depois, os resultados foram interpolados e integrados ao longo de todo o transecto. A descarga de água subterrânea submarina total (SGD) e o influxo foram estimados em 8.8 e 15.3 m3 d−1 m−1, respetivamente. A distribuição espacial da SGD e o influxo são diferentes dos das praias arenosas ou de seixo, possivelmente devido à baixa permeabilidade dos sedimentos (areia siltosa com lodo), ao declive muito pouco acentuado, e à larga escala das interfaces de percolação. Um canal de descarga de água doce foi identificado próximo da linha de maré baixa, evidenciado por um significativo incremento na descarga e pela baixa salinidade da água subterrânea observada nesse local. A SGD das interfaces de percolação corresponde a ∼21% do total da SGD. As taxas de descarga que ocorrem nas interfaces de percolação e as taxas de descarga das interfaces de percolação em função da descarga total decrescem em direção ao mar de forma significativa e monótona.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bear J (1972) Dynamics of fluids in porous media. Elsevier, Amsterdam
Boufadel MC (2000) A mechanistic study of nonlinear solute transport in a groundwater–surface water system under steady state and transient hydraulic conditions. Water Resour Res 36(9):2549–2565
Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33
Carey H, Lenkopane MK, Werner AD, Li L, Lockington DA (2009) Tidal controls on coastal groundwater conditions: field investigation of a macro tidal system. Aust J Earth Sci 56:1165–1179
Cartwright N, Nielsen P, Dunn S (2003) Water table waves in an unconfined aquifer: experiments and modeling. Water Resour Res 39(12):1330
Cox RA, Culkin F, Riley JP (1967) The electrical conductivity/chlorinity relationship in natural sea water. Deep-Sea Res I 17(4):679–689
Fetter CW (1994) Applied hydrogeology. Prentice-Hall, Englewood Cliffs, NJ
Gardner LR (2007) Role of stratigraphy in governing pore water seepage from salt marsh sediments. Water Resour Res 43, W07502
Gibbes B, Robinson C, Li L, Lockington D, Li H (2008) Tidally driven pore water exchange within offshore intertidal sandbanks: part II, numerical simulations. Estuar Coast Shelf Sci 79:121–132
Guo QN, Li HL, Boufadel MC, Sharifi Y (2010) Hydrodynamics in a gravel beach and its impact on the Exxon Valdez oil. J Geophys Res 115, C12077
Kim D-J, Moon WM, Kim G, Park S-E, Lee H (2011) Submarine groundwater discharge in tidal flats revealed by space-borne synthetic aperture radar. Remote Sens Environ 115:793–800
King JN, Mehta AJ, Dean RG (2010) Analytical models for the groundwater tidal prism and associated benthic water flux. Hydrogeol J 18:203–215
Li FL (2005) Monitoring and numerical simulation of saltwater intrusion in the eastern coast of Laizhou Bay (in Chinese). PHD Thesis, Ocean University of China, Qingdao, Shandong, China
Li HL, Boufadel MC (2010) Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat Geosci 3(2):96–99
Li HL, Jiao J (2013) Quantifying tidal contribution to submarine groundwater discharges: a review. Chin Sci Bull 58:3053–3059
Li HL, Zhang Q, Boufadel MC, Venosa AD (2007) A universal nutrient application strategy for the bioremediation of oil-polluted beaches. Mar Pollut Bull 54(8):1146–1161
Li HL, Boufadel MC, Weaver JW (2008) Tide-induced seawater–groundwater circulation in shallow beach aquifers. J Hydrol 352:211–224
Li HL, Sun PP, Chen S, Xia YQ, Liu S (2010) A falling-head method for measuring intertidal sediment hydraulic conductivity. Ground Water 48(2):206–211
Li L, Barry DA, Stagnitti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35:3253–3259
Li X, Hu BX, Burnett WC, Santos IR, Chanton JP (2009) Submarine ground water discharge driven by tidal pumping in a heterogeneous aquifer. Ground Water 47:558–568
Mao X, Enot P, Barry DA, Li L, Binley A, Jeng D-S (2006) Tidal influence on behavior of a coastal aquifer adjacent to a low-relief estuary. J Hydrol 327:110–127
Moore WS (1996) Large groundwater inputs to coastal waters revealed by Ra-226 enrichments. Nature 380:612–614
Nakada S, Yasumoto J, Taniguchi M, Ishitobi T (2011) Submarine groundwater discharge and seawater circulation in a subterranean estuary beneath a tidal flat. Hydrol Process 25:2755–2763
Nielsen P (1990) Tidal dynamics of the water table in beaches. Water Resour Res 26(9):2127–2134
Post VEA (2011) A new package for simulating periodic boundary conditions in MODFLOW and SEAWAT. Comput Geosci 37(11):1843–1849
Riedel T, Lettmann K, Beck M, Brumsack H-J (2010) Tidal variations in groundwater storage and associated discharge from an intertidal coastal aquifer. J Geophys Res 115, C04013
Robinson C, Gibbes B, Li L (2006) Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophys Res Lett 33, L03402
Robinson C, Li L, Prommer H (2007a) Tide-induced recirculation across the aquifer–ocean interface. Water Resour Res 43, W07428
Robinson C, Li L, Barry D (2007b) Effect of tidal forcing on a subterranean estuary. Adv Water Resour 30:851–865
Robinson C, Gibbes B, Carey H, Li L (2007c) Salt–freshwater dynamics in a subterranean estuary over a spring-neap tidal cycle. J Geophys Res 112, C09007
Slomp CP, Cappellen PV (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86
Turner IL (1995) Simulating the influence of groundwater seepage on sediment transported by the sweep of the swash zone across macro-tidal beaches. Mar Geol 125:153–174
Turner IL, Coates BP, Acworth RI (1997) Tides, waves and the super-elevation of groundwater at the coast. J Coastal Res 13(1):46–60
Wang XJ, Li HL, Yang JZ, Wan L, Wang XS, Jiang XW, Guo HM (2014) Measuring in-situ vertical hydraulic conductivity in tidal environments. Adv Water Resour. doi:10.1016/j.advwatres.2014.05.004
Wilson AM, Gardner LR (2006) Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resour Res 42(1), W0140510
Wooster WS, Lee AJ, Dietrich G (1969) Redefinition of salinity. Deep-Sea Res 16:321–322
Xia YQ, Li HL (2012) A combined field and modeling study of groundwater flow in a tidal marsh. Hydrol Earth Syst Sci 16:741–759
Xin P, Jin G, Li L, Barry DA (2009) Effects of crab burrows on pore water flows in salt marshes. Adv Water Resour 32:439–449
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 41025009 and 41272267) and the Fundamental Research Funds for the Central Universities. We would like to thank Tao Zheng, Jinzhi Yang, Zhenfei Xu, and Long Xi for their fieldwork. The report benefited greatly from the comments and suggestions from the editor, the associate editor and two reviewers.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, Q., Li, H., Wang, X. et al. Estimation of seawater–groundwater exchange rate: case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China). Hydrogeol J 23, 265–275 (2015). https://doi.org/10.1007/s10040-014-1196-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-014-1196-z