Skip to main content

Advertisement

Log in

Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate

Détermination des impacts d’une plantation forestière expérimentale sur la recharge des aquifères dans les Sand Hills du Nebraska (USA) en utilisant des chlorures et du sulfate

Determinación de los impactos de plantaciones forestales experimentales sobre la recarga de agua subterránea en las Nebraska Sand Hills (USA) usando cloruro y sulfato

利用氯化物和硫酸盐确定实验性植树造林对(美国)内布拉斯加州沙丘地下水补给的影响

Determinação do impacte de plantações florestais experimentais sobre a recarga de águas subterrâneas, nas Sand Hills, Nebrasca (EUA), através do uso de cloreto e sulfato

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Although impacts of land-use changes on groundwater recharge have been widely demonstrated across diverse environmental settings, most previous research has focused on the role of agriculture. This study investigates recharge impacts of tree plantations in a century-old experimental forest surrounded by mixed-grass prairie in the Northern High Plains (Nebraska National Forest), USA. Recharge was estimated using solute mass balance methods from unsaturated zone cores beneath 10 experimental plots with different vegetation and planting densities. Pine and cedar plantation plots had uniformly lower moisture contents and higher solute concentrations than grasslands. Cumulative solute concentrations were greatest beneath the plots with the highest planting densities (chloride concentrations 225–240 % and sulfate concentrations 175–230 % of the grassland plot). Estimated recharge rates beneath the dense plantations (4–10 mm yr−1) represent reductions of 86–94 % relative to the surrounding native grassland. Relationships between sulfate, chloride, and moisture content in the area’s relatively homogenous sandy soils confirm that the unsaturated zone solute signals reflect partitioning between drainage and evapotranspiration in this setting. This study is among the first to explore afforestation impacts on recharge beneath sandy soils and sulfate as a tracer of deep drainage.

Résumé

Bien que les impacts des changements d’utilisation des sols sur la recharge des aquifères ont été largement démontrés dans divers contextes environnementaux, la plupart des recherches antérieures ont porté sur le rôle de l’agriculture. Cette étude examine les impacts de la recharge de trois plantations d’arbres dans une forêt expérimentale centenaire entourée de prairies mixtes dans les hautes plaines du Nord (Forêt nationale du Nebraska), Etats Unis d’Amérique. La recharge a été estimée en utilisant des méthodes de bilan massique des solutés au sein de la zone non saturée sous 10 parcelles expérimentales composées de différentes espèces et de densités de plantation. Les parcelles de pins et de cèdres avaient de manière uniforme de plus faibles teneurs en humidité et de plus forte concentrations en solutés que pour les parcelles de prairie. Les concentrations cumulées en solutés atteignaient un maximum sous les parcelles avec les plus fortes densités de plantation (concentrations de chlorure de 225–240 % et concentrations de sulfate de 175–230 % par rapport à la parcelle de prairie). Les taux de recharge estimés sous les parcelles de plantation dense (4–10 mm/an) représentent des réductions de 86–94 % par rapport au taux de recharge sur les prairies naturelles environnantes. Les relations entre les concentrations en sulfate, chlorure et teneur en eau dans des sols sablonneux relativement homogènes de la région confirment que les signaux de solutés de la zone non saturée reflètent la répartition entre le drainage et l’évapotranspiration pour ce contexte. Cette étude est parmi les premières à explorer les impacts du déboisement sur la recharge au sein de sols sableux et à utiliser les sulfates comme traceur du drainage profond.

Resumen

Aunque los impactos de los cambios del uso de la tierra sobre la recarga de agua subterránea han sido ampliamente demostrados a través de diversas configuraciones ambientales, la mayoría de las investigaciones más recientes se han focalizado en el rol de la agricultura. Este estudio investiga los impactos en la recarga de plantaciones de árboles en una forestación experimental centenaria rodeada por una llanura de pastura mezclada en la Northern High Plains (Nebraska National Forest), EEUU. La recarga fue estimada usando métodos de balance de masa de solutos a partir de testigos de la zona no saturada por debajo de 10 parcelas experimentales con diferente vegetación y densidad de la plantación. Las parcelas de plantaciones de pinos y cedros tuvieron uniformemente menor contenido de humedad y mayores concentraciones de soluto que las pasturas. Las concentraciones acumulativa de solutos fueron mayores por debajo de las parcelas con mayores densidades de plantaciones (concentraciones de cloruro de 225–240 % y concentraciones de sulfato de 175–230 % en las parcelas en pasturas). Las tasas de recarga estimadas por debajo de la plantaciones densas (4–10 mm a−1) representan reducciones de 86–94 % relativas a la pastura nativa circundantes. Las relaciones entre sulfato, cloruro, y contenido de humedad en las áreas de suelos arenosos relativamente homogéneos confirman que señales del soluto en la zona no saturada reflejan la partición entre drenaje y evapotranspiración en esta configuración. Este estudio está entre los primeros para explorar los impactos de la reforestación sobre la recarga de suelos arenosos y del sulfato como un trazador de drenaje profundo.

摘要

尽管对各种环境背景下土地变化对地下水补给的影响进行过广泛的研究,但大部分研究集中在农业的作用上。本项研究调查了一个具有百年历史的实验林内植树对地下水补给的影响,这个试验林被美国北方高平原(内布拉斯加州国家森林)生长着混合草的牧场所环绕。根据10个不同植被和种植密度的试验田之下的非饱和带岩心资料,利用溶质质量平衡方法估算了补给量。松树和雪松种植地块的含水量比草原的含水量都低,而溶质含量都比草原的溶质含量都高。种植密度最大的地块累积溶质含量最高(草原地块的氯化物含量225–240 %,硫酸盐含量175–230)。致密种植林之下估算的补给量(4–10 mm yr–1)相对于周围天然的草原减少86–94 %。硫酸盐、氯化物和本区相对同质的砂质土壤之间的关系证实,非饱和带溶质的标志反映了在这种背景下排水和蒸发蒸腾之间的分区。这项研究是第一批探索植树造林对砂质土壤下补给的影响及硫酸盐作为深部排水示踪剂的研究。

Resumo

Apesar dos impactes das modificações do uso da terra na recarga de água subterrânea terem sido amplamente demonstrados em diversas configurações ambientais, a maioria das pesquisas anteriores concentrou-se sobre o papel da agricultura. Este estudo investiga os impactes na recarga provocados pela plantação de árvores numa floresta experimental centenária, rodeada por pradaria com pastagens, no norte das High Plains (Floresta Nacional do Nebrasca), EUA. A recarga foi estimada utilizando métodos de balanço de massa de soluto a partir de zonas não saturadas, sob 10 parcelas experimentais com diferentes tipos de vegetação e de densidade de plantio. As parcelas de plantação de pinheiro e cedro apresentaram teores de humidade uniformemente baixos e concentração de solutos mais elevada do que as pastagens. As concentrações de solutos acumulados foram maiores nas parcelas com as maiores densidades de plantio (concentração de cloreto de 225–240 % e concentração de sulfato de 175–230 % da parcela de pastagens). As taxas de recarga estimadas sob as plantações densas (4–10 mm ano−1) representam reduções de 86–94 % em relação às pastagens nativas circundantes. As relações entre sulfato, cloreto e teor de humidade, nos solos arenosos relativamente homogéneos da área, confirmam que os sinais dos solutos na zona não saturada refletem a partição entre drenagem e evapotranspiração neste contexto. Este estudo é dos primeiros a explorar os impactes da florestação na recarga sob solos arenosos e a usar o sulfato como um traçador para a drenagem profunda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison GB, Hughes MW (1978) The use of environmental tritium and chloride to estimate total recharge to an unconfined aquifer. Aust J Soil Sci 16:181–195

    Article  Google Scholar 

  • Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173. doi:10.1016/0022-1694(83)90019-7

    Article  Google Scholar 

  • Allison GB, Cook PG, Barnett SR, Walker GR, Jolly ID, Hughes MW (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119:1–20

    Article  Google Scholar 

  • Alves ME, Lavorenti A (2004) Sulfate desorption from representative soils of the São Paulo State, Brazil. Geoderma 118:89–99

    Article  Google Scholar 

  • Barnett SR (1989) The effect of land clearance in the Malle Region on River Murray salinity and land salinization. BMR J Aust Geol Geophys 11:205–208

    Google Scholar 

  • Bessey C (1913) Some of the next steps in botanical science. Science 37:1–13. doi:10.1126/science.37.940.1

    Article  Google Scholar 

  • Billesbach DP, Arkebauer TJ (2012) First long-term, direct measurements of evapotranspiration and surface water balance in the Nebraska Sand Hills. Agric For Meteorol 156:104–110. doi:10.1016/j.agrformet.2012.01.001

    Article  Google Scholar 

  • Bleed AS, Flowerday CA (1998) An atlas of the Sand Hills. Conservation and Survey Division, University of Nebraska, Lincoln, NB, pp 1–17

    Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310:28–61

    Article  Google Scholar 

  • Calder IR, Prasanna KT, Hall RL (1993) Hydrological impact of Eucalyptus plantation in India. J Hydrol 150:635–648

    Article  Google Scholar 

  • Connell WE, Patrick WH (1968) Sulfate reduction in soil: effects of redox potential and pH. Science 159:86–87

    Article  Google Scholar 

  • Cook PG, Leaney FW, Jolly ID (2001) Groundwater recharge in the Mallee region, and salinity implications for the Murray River. Tech Rep 45/01, CSIRO Land and Water, Acton, Australia

  • Cook PG, Leaney FW, Miles M (2004) Groundwater recharge in the North-East Mallee region, South Australia. Tech. Rep 25/04, CSIRO Land and Water, Acton, Australia

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917

    Article  Google Scholar 

  • de Lima WP, Zakia MJB, Libardi PL, de AP S-F (1990) Comparative evapotranspiration of Eucalyptus, Pine and natural “Cerrado” vegetation measure by the soil water balance method. IPEF Int 1:5–11

    Google Scholar 

  • Deng Z, Priestley SC, Guan H, Love AJ, Simmons CT (2013) Canopy enhanced chloride deposition in coastal South Australia and its application for the chloride mass balance method. J Hydrol 497:62–70

    Article  Google Scholar 

  • Edmunds WM, Darling WG, Kinniburgh DG (1988) Solute profile techniques for recharge estimation in semi-arid areas and arid terrain. In: Simmers I (ed) Estimation of natural groundwater recharge. Kluwer, Dordrecht, The Netherlands, pp 13–157

    Google Scholar 

  • Edmunds WM, Fellman E, Goni IB, Prudhomme C (2002) Spatial and temporal distribution of groundwater recharge in northern Nigeria. Hydrogeol J 10:205–215. doi:10.1007/s10040-001-0179-z

    Article  Google Scholar 

  • Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou X, Zanner CW (2009) Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiol 29:157–169

    Article  Google Scholar 

  • Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain. J Hydrol 7:178–197

    Article  Google Scholar 

  • Favreau G, Leduc C, Marlin C, Dray M, Taupin JD, Massault M, Le Gal La Salle C, Babic M (2002) Estimate of recharge of a rising water-table in semi-arid Niger from 3H and 14C modeling. Ground Water 40:144–151

    Article  Google Scholar 

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res. doi:10.1029/2007WR006785

    Google Scholar 

  • Freney JR, Williams CH (1983) The sulphur cycle in soil. In: Ivanov MV, Freney JR (eds) The global biogeochemical sulphur cycle. Scientific committee on the problems of the environment (SCOPE) no. 19, Wiley, New York, pp 129–201

  • Gates JB, Edmunds WM, Ma J, Scanlon BR (2008a) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Ma J, Sheppard PR (2008b) A 700-year history of groundwater recharge in the drylands of NW China. The Holocene 18(7):1045–1054

    Article  Google Scholar 

  • Gates JB, Scanlon BR, Mu X, Zhang L (2011) Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. Hydrogeol J 19:865–875

    Article  Google Scholar 

  • Ginn TR, Murphy EM (1997) A transient flux model for convective infiltration: forward and inverse solution for chloride mass balance studies. Water Resour Res 33:2065–2079

    Article  Google Scholar 

  • Gosselin DC, Sridhar V, Harvey FE, Goeke JW (2006) Hydrological effects and groundwater fluctuations in interdunal environments in the Nebraska Sand Hills. Great Plains Res 16:17–28

    Google Scholar 

  • Harrison RB, Johnson DW, Todd DE (1989) Sulfate adsorption and desorption reversibility in a variety of forest soils. J Environ Qual 18:419–426

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Healy RW, Rice CA, Bartos TT, McKinley MP (2008) Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: evolution of water and sediment chemistry. Water Resour Res 44, W06424. doi:10.1029/2007WR006396

    Google Scholar 

  • Hellerich JA (2006) Influence of afforestation and hillslope position on soil carbon dynamics in the Nebraska Sand Hills, MSc Thesis, Univ of Nebraska-Lincoln, USA

  • High Plains Regional Climate Center (2013) Historical climate data for Nebraska Sand Hills at Halsey, NE. http://www.hprcc.unl.edu. Accessed 8 May 2013

  • Holsen TM, Noll KE (1992) Dry deposition of atmospheric particles: application of current models to ambient data. Environ Sci Technol 26:1807–1815

    Article  Google Scholar 

  • Houle D, Carignan R, Ouimet R (2001) Soil organic sulfur dynamics in a coniferous forest. Biogeochemistry 53:105–124

    Article  Google Scholar 

  • Huang M, Gallichand J (2006) Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China. Agric Water Manag 85:67–76

    Article  Google Scholar 

  • Huang T, Pang Z (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol J 19:177–186

    Article  Google Scholar 

  • Hunt JC (1965) The forest that men made. American Forests. OCLC no. 8515325, 13 pp

  • Issar A, Nativ R, Karnieli K, Gat JR (1984) Isotopic evidence of the origin of groundwater in arid zones. Proc Symp 85–105. IAEA, Vienna, 1984

  • Jayawickreme DH, Santoni CS, Kim JH, Jobbagy EG, Jackson RB (2011) Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21:2367–2379. doi:10.1890/10-2086.1

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) Groundwater use and salinization with grassland afforestation. Glob Chang Biol 10:1299–1312

    Article  Google Scholar 

  • Johnson DW, Todd DB (1983) Relationship among iron, aluminum, carbon and sulfate in a variety of forest soils. Soil Sci Soc Am J 47:792–800

    Article  Google Scholar 

  • Johnson DW, Hornbeck JM, Kelly JM, Swank WT, Todd DE (1980) Regional patterns of soil sulfate accumulation: relevance to ecosystem sulfur budgets. In: Shriner S (ed) Atmospheric sulfur deposition: environmental impact and health effects. Ann Arbor Science, Ann Arbor, MI

    Google Scholar 

  • Kennett-Smith A, Cook PG, Walker GR (1994) Factors affecting groundwater recharge following clearing in the south western Murray Basin. J Hydrol 154:85–105. doi:10.1016/0022-1694(94)90213-5

    Article  Google Scholar 

  • Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water-table: the continental terminal in south-west Niger. J Hydrol 243:43–54. doi:10.1016/S0022-1694(00)00403-0

    Article  Google Scholar 

  • Liao L, Green CT, Bekins BA, Böhlke JK (2012) Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour Res 48:1–18. doi:10.1029/2011WR011008

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Mitchell MJ, Lovett GT, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60:235–316

    Article  Google Scholar 

  • Lin D, Jin M, Liang X, Zhan H (2013) Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate. Hydrogeol J 21:1469–1480

    Article  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272. doi:10.2136/sssaj1984.03615995004800060013x

    Article  Google Scholar 

  • Liu F, He J, Colombo C, Violante A (1999) Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate. Soil Sci 164:180–189

    Article  Google Scholar 

  • Massmann G, Tichomirowa M, Merz C, Pekdeger A (2003) Sulfide oxidation and sulfate reduction in a shallow groundwater system (Oderbruch Aquifer, Germany). J Hydrol 278:231–243. doi:10.1016/S0022-1694(03)00153-7

    Article  Google Scholar 

  • Maynard DG, Stewart JWB, Bettany JR (1984) Sulfur cycling in grassland and parkland soils. Biogeochemistry 1:97–111

    Article  Google Scholar 

  • McMahon PB, Dennehy KF, Michel RL, Sophocleous MA, Ellett KM, Hurlbut DB (2003) Water movement through thick unsaturated zones overlying the Central High Planes Aquifer, southwestern Kansas, 2000–2001. US Geol Surv Water Resour Invest Rep 03–4171:32

    Google Scholar 

  • McMahon PB, Dennehy KF, Bruce BW, Böhlke JK, Michel RL, Gurdak JJ, Hurlbut DB (2006) Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resour Res. doi:10.1029/2005WR004417

    Google Scholar 

  • Moore M, Deiter DA (1992) Stand density index as a predictor of forage production in northern Arizona pine forests. J Range Manag 45:267–271. doi:10.2307/4002976

    Article  Google Scholar 

  • Moore MM, Casey CA, Bakker JD, Springer JD, Fule PZ, Covington WW, Laughlin DD (2006) Herbaceous vegetation responses (1992–2004) to restoration treatments in a ponderosa pine forest. Rangel Ecol Manag 59:135–144

    Article  Google Scholar 

  • National Atmospheric Deposition Program (2013) Annual data for North Platte Agricultural Experiment Station (NE99). http://nadp.sws.uiuc.edu/nadpdata/annualReq.asp?site=NE99. Accessed 19 July 2012

  • Nolan BT, Healy RW, Taber PE, Perkins K, Hitt KJ, Wolock DM (2007) Factors influencing groundwater recharge in the eastern United States. J Hydrol 332:187–205

    Article  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in Cerrado savannas of central Brazil. Funct Ecol 19:574–581. doi:10.1111/j.1365-2435.2005.01003.x

    Article  Google Scholar 

  • Phillips FM (1994) Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci Soc Am J 58:14–24

    Article  Google Scholar 

  • Reganold JP, Harsh JB (1985) Expressing cation exchange capacity in milliequivalents per 100 grams and in SI units. J Agron Ed 14:84–90

    Google Scholar 

  • Rogers C, Lavery T, Mishoe K, Baumgardner R (2012) Evaluation of data replacement strategies for CASTNET dry deposition. Mod J Environ Sci Eng 1:789–799

    Google Scholar 

  • Salama RB, Otto CJ, Fitzpatrick RW (1999) Contributions of groundwater conditions to soil and water salinization. Hydrogeol J 7:46–64. doi:10.1007/s100400050179

    Article  Google Scholar 

  • Scanlon BR (1991) Evaluation of moisture flux from chloride data in desert soils. J Hydrol 128:137–156. doi:10.1016/0022-1694(91)90135-5

    Article  Google Scholar 

  • Scanlon BR (2000) Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resour Res 36:395–409

    Article  Google Scholar 

  • Scanlon BR, Goldsmith RS (1997) Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour Res 33:2239. doi:10.1029/97WR01332

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11:1577–1593

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. doi:10.1002/hyp.6335

    Article  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:1–18

    Google Scholar 

  • Scanlon BR, Stonestrom DA, Reedy RC, Leaney FW, Gates JB, Cresswell RG (2009) Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resour Res 45:W00A18. doi:10.1029/2008WR006963

    Google Scholar 

  • Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci 109:9320–9325. doi:10.1073/pnas.1200311109

    Article  Google Scholar 

  • Schindler SC, Mitchell MJ, Scott TJ, Fuller RD, Driscoll CT (1986) Incorporation of sulfur-35 sulfate into inorganic and organic constituents of two forest soils. Soil Sci Soc Am J 50:457–462

    Article  Google Scholar 

  • Scott DF, Lesch W (1997) Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, Mpumalanga Province. S Afr J Hydrol 199:360–377

    Article  Google Scholar 

  • Simonin K, Kolb TE, Montes-Helu M, Koch GW (2007) The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric For Meteorol 143:266–276. doi:10.1016/j.agrformet.2007.01.003

    Article  Google Scholar 

  • Singh RB (2000) Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric Ecosyst Environ 82:97–103. doi:10.1016/S0167-8809(00)00219-X

    Article  Google Scholar 

  • Stanton JS, Qi SL (2007) Ground-water quality of the northern High Plains aquifer, 1997, 2002–04. US Geol Surv Sci Invest Rep 2006–5138, pp 1–60

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Strickland TC, Fitzgerald JW, Swank WT (1985) In situ measurements of sulfate incorporation into forest floor and soil organic matter. Can J For Res 16:549–553

    Article  Google Scholar 

  • Sullivan PL, Price RM, Miralles-Wilhelm F, Ross MS, Scinto LJ, Dreschel TW, Sklar FH, Cline E (2012) The role of recharge and evapotranspiration as hydraulic drivers of ion concentrations in shallow groundwater on Everglades tree islands, Florida (USA). Hydrol Process 10:75–95. doi:10.1002/hyp

    Google Scholar 

  • Szilagyi J, Harvey EF, Ayers JF (2003) Regional estimation of base recharge to groundwater using water balance and a base-flow index. Ground Water 41:504–513

    Article  Google Scholar 

  • Szilagyi J, Zlotnik VA, Gates JB, Jozsa J (2011) Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA. Hydrogeol J 19:1503–1513

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer, Sunderland, UK

    Google Scholar 

  • Ten Harkel MJ (1997) The effects of particle-size distribution and chloride depletion of sea-salt aerosols on estimating atmospheric deposition at a coastal site. Atmos Environ 31:417–427

    Article  Google Scholar 

  • Wang B, Jin M, Nimmo JR, Yang L, Wang W (2008) Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers. J Hydrol 356:209–222. doi:10.1016/j.jhydrol.2008.04.011

    Article  Google Scholar 

  • Wang T, Zlotnik VA, Šimunek J, Schaap M (2009) Using process-based models and pedotransfer functions for soil hydraulic characteristics to estimate groundwater recharge in semi-arid regions. Water Resour Res 45, W04412. doi:10.1029/2008WR006903

    Google Scholar 

  • Winspear NR, Pye K (1995) Textural, geochemical and mineralogical evidence for the origin of Peoria Loess in central and southern Nebraska, USA. Earth Surf Process Landf 20:735–745. doi:10.1002/esp.3290200805

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:458–468

    Article  Google Scholar 

  • Zhang YK, Schilling KE (2006) Increasing streamflow and baseflow in Mississippi River since the 1940s: effect of land use change. J Hydrol 324:412–422. doi:10.1016/j.jhydrol.2005.09.033

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Nebraska Geological Society and American Association of Petroleum Geologists. Thanks are due to Dave Wedin, Jeremy Hiller, and the staff of Nebraska National Forest – Bessey Ranger District for providing site access and logistical support, and to Paolo Nasta for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Adane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adane, Z.A., Gates, J.B. Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate. Hydrogeol J 23, 81–94 (2015). https://doi.org/10.1007/s10040-014-1181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1181-6

Keywords

Navigation