Advertisement

Hydrogeology Journal

, Volume 22, Issue 8, pp 1921–1934 | Cite as

Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies

  • Thomas M. MissimerEmail author
  • Christiane Hoppe-Jones
  • Khan Z. Jadoon
  • Dong Li
  • Samir K. Al-Mashharawi
Paper

Abstract

Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

Keywords

Coastal aquifers Desalination Hydrochemistry Groundwater microbiology Saudi Arabia 

Hydrogéologie, qualité de l’eau et évaluation microbienne d’un aquifère côtier alluvial dans l’Ouest de l’Arabie Saoudite: utilisation potentielle des aquifères côtiers des oueds pour l’alimentation en eau après désalinisation

Résumé

Les aquifères alluviaux des oueds situés le long des zones côtières du Moyen Orient sont considérés comme sources d’eau appropriées pour les stations de traitement de désalinisation par osmose inverse basées sur une haute productivité, la connectivité à la mer pour la recharge et la présence d’eau de mer avec une composition chimique semblable à celle de la Mer Rouge adjacente. Une investigation de l’intersection de l’Oued Wasimi avec la mer Rouge dans l’ouest de l’Arabie Saoudite a révélé que l’aquifère alluvial associé principalement libre se divise en deux aquifères de sable et gravier au niveau de la côte, chacun avec une forte productivité (transmissivité = 42,000 m2/jour). Ce système aquifère devient captif proche de la côte et contient de l’eau hypersaline. L’hydrogéologie de l’Oued Wasimi montre que deux des hypothèses sont incorrectes en ce que l’aquifère n’est pas bien connecté à la mer, du fait du caractère captif de l’aquifère dû à une très faible conductivité hydraulique des formations terrigènes et de boues marines et que l’aquifère contient de l’eau hypersaline résultant d’une connexion hydraulique avec une sebkha côtière. Une étude complémentaire montre que le système aquifère contient une communauté microbienne diversifiée composée principalement de Proteobacteria accompagnée par des pourcentages élevés de Gammaproteobacteria, Alphaproteobacteria et Deltaproteobacteria.

Hidrogeología, calidad de agua y evaluación microbiana de un acuífero costero aluvial en Arabia Saudita occidental: uso potencial de acuíferos costeros uadis para la desalinización de los abastecimientos de agua

Resumen

Se ha supuesto los acuíferos aluviales uadis situados a lo largo de áreas costeras del Medio Oriente como fuentes apropiadas de agua de alimentación para las instalaciones de osmosis inversa del agua de mar basadas en alta productividad, conectividad con el mar para recarga, y la ocurrencia de agua de mar con una química similar a la del Mar Rojo adyacente. Una investigación de la intersección del uadi Wasimi con el Mar Rojo en Arabia Saudita occidental ha revelado que el acuífero aluvial asociado, predominantemente no confinado, se divide en dos acuíferos de arena y grava en la costa, cada uno de ellos con alta productividad (transmisividad = 42,000 m2/día). Este sistema acuífero se convierte en confinado cerca de la costa y contiene agua hipersalina. La hidrogeología del uadi Wasimi muestra que dos de las suposiciones son incorrectas en que el acuífero no está bien conectado al mar debido al confinamiento por una muy baja conductividad hidráulica de fangos marinos y terrígenos y que el acuífero contiene agua hipersalina como un resultado de una conexión hidráulica a una sabkha costera. Un estudio suplementario muestra que el sistema acuífero contiene una variada comunidad microbiana compuesta predominantemente por Proteobacteria con acompañamiento de alto porcentaje de Gammaproteobacteria, Alphaproteobacteria y Deltaproteobacteria.

沙特阿拉伯西部一沿海冲积含水层的水文地质、水质和微生物评价:淡化水供水中沿海干谷含水层的潜在利用

摘要

鉴于其高产性、补给时与海连通度及海水化学成分相似于毗邻的红海化学成分,位于中东沿海地区的干谷冲积含水层被认为是海水反向渗透设施合适的供水源。对沙特阿拉伯西部的Wasimi干谷和红海交汇部的调查显示,相关的、主要为非承压含水层在海边分为两个砂--砾含水层,每个含水层出水量都很高(导水系数 = 42,000 m2/天)。这个含水层系统在海边附近变为承压状态,含超盐水。Wasimi干谷水文地质条件显示,两个假设是不正确的,这是因为受到水力传导率非常低的陆生和海相淤泥的限制,含水层与海的连通性很差,由于与沿海盐沼水力上相通,含水层含超盐水。补充研究显示,含水层系统含多种多样的微生物群落,主要由变形菌门组成,伴有很高含量的伽马变形菌、阿尔法变形菌和德尔塔变形菌。

Hidrogeologia, qualidade da água e avaliação microbiológica de um aquífero costeiro no oeste da Arábia Saudita: uso potencial de aquíferos de wadi costeiros para dessalinização de águas destinadas a abastecimento

Resumo

Aquíferos aluviais de wadi localizados ao longo de áreas costeiras do Médio Oriente têm sido assumidos como fontes adequadas de água destinada ao abastecimento de instalações de osmose inversa baseadas em alta produtividade, conexão com o mar para a recarga e ocorrência de água salina com composição química similar à do adjacente Mar Vermelho. Uma investigação da interseção do Wadi Wasimi com o Mar Vermelho no oeste da Arábia Saudita revelou que o predominantemente freático aquífero aluvial divide em dois os aquíferos de areia e seixo da costa, cada um com produtividades elevadas (transmissividade = 42,000 m2/dia). Este sistema aquífero torna-se confinado próximo da costa e contém água hipersalina. A hidrogeologia do Wadi Wasimi mostra que duas das suposições são incorretas, no que respeita ao facto do aquífero não estar bem conectado ao mar, devido ao confinamento por lodos marinhos e terrígenos com muito baixa condutividade hidráulica e ao aquífero conter água hipersalina, como resultado da conexão com uma planície de sal (sabkha) costeira. Um estudo suplementar mostra que o sistema aquífero contém uma comunidade microbiológica diversificada, composta predominantemente por Proteobacteria acompanhada por elevadas percentagens de Gammaproteobacteria, Alphaproteobacteria e Deltaproteobacteria.

Supplementary material

10040_2014_1168_MOESM1_ESM.pdf (215 kb)
ESM 1 (PDF 215 kb)

References

  1. Al-Saud M (2010) Managing the water sector of Saudi Arabia. Deputy Minister, Ministry of Water and Electricity, Saudi Arabia. Keynote lecture at the Water Desalination and Reuse Center. King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaGoogle Scholar
  2. Al-Shaibani AM (2008) Hydrogeology and hydrochemistry of a shallow alluvial aquifer, western Saudi Arabia. Hydrogeol J 16:155–165. doi: 10.1007/s10040-007-0220-y CrossRefGoogle Scholar
  3. Alsharhan AS, Kendall CGSC (2003) Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61:191–243. doi: 10.1016/S0012-8252(02)00110-1 CrossRefGoogle Scholar
  4. American Water Works Association (AWWA) (2012) Standard methods for the examination of water and wastewater. American Water Works Association, Denver, COGoogle Scholar
  5. Anderson DJ, Timms WA, Glamore WC (2009) Optimising subsurface well design for coastal desalination water harvesting. Aust J Earth Sci 56:53–60CrossRefGoogle Scholar
  6. Bartak R, Grischek T, Ghodeif K, Ray C (2012) Beach sand filtration as pre-treatment for RO desalination. Int J Water Sci 1(2):1–10CrossRefGoogle Scholar
  7. Behairy AKA, Durgaprassada Rao NVN, Abou Oaf M, El Abd Y, El Ghobary H (1987) Depositional and diagenetic history of evaporitic sediments in a coastal lagoon and sabkha, eastern Red Sea. Research Project no. 145/407, Final report, King Abdulaziz University, Jeddah, Saudi ArabiaGoogle Scholar
  8. Berman T (2010) Biofouling: TEP—a major challenge for water filtration. Filtr Sep 47(2):20–22CrossRefGoogle Scholar
  9. Braker G, Ayala-del-Rio HL, Devol AH, Fesefelt A, Tiedje JM (2001) Community structure of denitrifiers, bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67:1893–1901CrossRefGoogle Scholar
  10. Chen CX, Jiao JJ (1999) Numerical simulation of pumping tests in multilayer wells with non-Darcian flow in the wellbore. Ground Water 37(3):465–474CrossRefGoogle Scholar
  11. David B, Pinot JP, Morrillon M (2009) Beach wells for large-scale reverse osmosis plants: the Sur case study. Paper IDAWC/DB09-106, Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Dubai, UAE, October 2009Google Scholar
  12. De Montety V, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrochemical processes in a confined coastal aquifer: case of the Rhone delta (southern France). Appl Geochem 23(8):2337–2349CrossRefGoogle Scholar
  13. Dehwah AHA, Al-Mashhawari S, Missimer TM (2013) Mapping to assess feasibility of using subsurface intakes for SWRO, Red Sea coast of Saudi Arabia. Desalination Water Treat 50:2351–2361. doi: 10.1080/19443994.2013.862035 Google Scholar
  14. DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469CrossRefGoogle Scholar
  15. Dupraz S, Parmentier M, Menez B, Guyot F (2009) Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chem Geol 265:44–53CrossRefGoogle Scholar
  16. El Abd YI, Awad MB (1991) Evaporitic sediment distributions in Al-Kharrar sabkha, west Red Sea coast of Saudi Arabia, as revealed from electrical soundings. Mar Geol 97:137–143CrossRefGoogle Scholar
  17. Fetter CW (1988) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  18. Gavish E (1974) Geochemistry and mineralogy of a recent sabkha along the coast of Sinai Gulf of Suez. Sedimentology 21:394–414CrossRefGoogle Scholar
  19. Gavish E (1980) Recent sabkhas marginal to the southern coasts of Sinai, Red Sea. In: Nissenbaum A (ed) Hypersaline brines and evaporative environments. Elsevier, Amsterdam, pp 23–51Google Scholar
  20. Geng X, Li H, Boufadel M, Liu S (2009) Tide-induced head fluctuations in a coastal aquifer: effects of the elastic storage and leakage of the submarine outlet-capping. Hydrogeol J 17(5):1289–1296CrossRefGoogle Scholar
  21. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of desalination: current and future challenges for better supply sustainability. Desalination 309:197–207CrossRefGoogle Scholar
  22. Jacob CE (1950) Flow of groundwater. In: Rouse H (ed) Engineering hydraulics. Wiley, New York, pp 321–386Google Scholar
  23. Jamaluddin ATM, Hassan AM, Al-Reweli, A, Saeed MO (2007) Operation of Al-Birk plant introducing beachwell intake system. Proc. of the International Desalination Association World Congress on Desalination and Water Reuse, Singapore, 2007Google Scholar
  24. Jiao JJ, Tang ZH (1999) An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour Res 35(3):747–751CrossRefGoogle Scholar
  25. Kateman G, Pupers FW (1981) Quality control in analytical chemistry. Wiley, New YorkGoogle Scholar
  26. Kinsman DJJ (1969) Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporates. Am Assoc Pet Geol Bull 53(4):830–840Google Scholar
  27. Lanyon JA, Eliot IG, Clarke DJ (1982) Groundwater-level variation during semi-diurnal spring tide cycles on a sandy beach. Aust J Mar Freshw Res 33(3):377–400CrossRefGoogle Scholar
  28. Li GM, Chen CX (1991) Determining the length of confined aquifer roof extending under the sea by the tidal method. J Hydrol 123(1–2):97–104Google Scholar
  29. Li D, Sharp JO, Saikaly PE, Ali S, Alidina M, Alarawi MS, Keller S, Hoppe-Jones C, Drewes J (2012) Dissolved organic carbon influences microbial diversity in managed aquifer recharge systems. Appl Environ Microbiol 78:6819–6828CrossRefGoogle Scholar
  30. Maliva RG, Missimer TM (2012) Arid lands water evaluation and management. Springer, New YorkCrossRefGoogle Scholar
  31. Massena R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Arches in the Santa Barbara Channel. Appl Environ Microbiol 63(12):50–56Google Scholar
  32. Missimer TM (2009) Water supply development, aquifer storage, and concentrate disposal for membrane water treatment facilities. Schlumberger, Sugar Land, TXGoogle Scholar
  33. Missimer TM, Drewes JE, Amy G, Maliva RG, Keller S (2012) Restoration of wadi aquifers by artificial recharge with treated wastewater. Ground Water 50(4):514–526. doi: 10.1111/j.1745-6584.2012.00941.x CrossRefGoogle Scholar
  34. Missimer TM, Ghaffour N, Dehwah AHA, Rachman R, Maliva RG, Amy GL (2013) Subsurface intakes for seawater reverse osmosis facilities: capacity limitation, water quality improvement, and economics. Desalination 322:37–51CrossRefGoogle Scholar
  35. Orsi WD, Edgecomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499:205–208CrossRefGoogle Scholar
  36. Patterson RJ, Kinsman DJJ (1981) Hydrologic framework of a sabkhas along Arabian Gulf. Am Assoc Pet Geol Bull 53(4):830–840Google Scholar
  37. Pulido-Leboeuf P (2004) Seawater and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Appl Geochem 19(10):1517–1527CrossRefGoogle Scholar
  38. Rachman R, Merle T, Al-Mashhawari S, Missimer TM (2013) Removal of algae, bacteria, and organic carbon by the beach well intake system at Sur, Oman Seawater RO Facility. IDA TIAN13-227, Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Tianjin, China, IDA, Topsfield, MA, 9 ppGoogle Scholar
  39. Rachman R, Li S, Al-Mashhawari S, Dehwah AHA, Winters H, Missimer TM (2014) Reduction in organic compound concentrations using well intakes for SWRO facilities in the Caribbean and the Red Sea of Saudi Arabia. Proceedings, American Membrane Technology Association/American Water Works Association, 2014 Membrane Technology Conference & Exposition, Las Vegas, NV, March 2014, 9 ppGoogle Scholar
  40. Ray C, Melin G, Linsky RB (eds) (2002) Riverbank filtration: improving source-water quality. Academic, BostonGoogle Scholar
  41. Roobol MJ, Kadi KA (2007) Cenozoic faulting and traces of Tertiary gabbro dikes in the Ribigh area, Saudi Arabia. Technical Report SGS-TR-2008-6, Saudi Geological Survey, Jeddah, Saudi ArabiaGoogle Scholar
  42. Sakr SA (1999) Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeol J 7(2):155–160CrossRefGoogle Scholar
  43. Sola F, Vallejos A, Moreno L, Lopez-Geta JA, Pulido Borsh A (2013a) Identification of hydrochemical process linked to marine intrusion induced by pumping of a semi-confined Mediterranean coastal aquifer. Int J Environ Sci Technol 10(1):63–76CrossRefGoogle Scholar
  44. Sola F, Vellejos A, Lopez-Geta JA, Pulido-Bosch A (2013b) The role of aquifer media in improving the quality of seawater feed to desalination plants. Water Resour Manag 27(5):1377–1392CrossRefGoogle Scholar
  45. Stoica E, Herndl GJ (2007) Contribution of Crenarchaeota and Euryarchaeota to the prokaryotic plankton in the coastal Black Sea. J Plankton Res 29(8):699–700CrossRefGoogle Scholar
  46. Turner IL, Leatherman SP (1997) Beach dewatering as a ‘soft’ engineering solution to coastal erosion: a history and critical review. J Coast Res 13(4):1050–1063Google Scholar
  47. US Geological Survey (2014) National field manual for the collection of water quality data. US Geological Survey Techniques of Water Resources Investigation Reports, book 9. Available at http://water.usgs.gov/owq/FieldManual. Accessed 2 May 2014
  48. Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145:3305–3315Google Scholar
  49. Urakawa H, Yoshida T, Nishimura M, Ohwada K (2008) Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ Microbiol 2:542–554CrossRefGoogle Scholar
  50. Villacorte LO, Kennedy MD, Amy GL, Schippers JC (2009) Measuring transparent exopolymer particles (TEO) as indicators of the biofouling potential of RO feed water. Desalin Water Treat 5:207–212CrossRefGoogle Scholar
  51. Water Reuse Foundation (2011a) Assessing seawater intake systems for desalination plants. Water Reuse Research Foundation, Alexandria, VA, 169 ppGoogle Scholar
  52. Water Reuse Foundation (2011b) Desalination plant intakes: Impingement and entrainment impacts and solutions. White paper, Water Reuse Research Foundation, Alexandria, VA, 21 ppGoogle Scholar
  53. Willis CJ, Elkan GH, Horvath E, Dail KR (1975) Bacterial flora of saline aquifers. Ground Water 13(5):406–409CrossRefGoogle Scholar
  54. Wolfgang S (2003) Microbial life in geothermal waters. Geothermics 32:655–667CrossRefGoogle Scholar
  55. Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov V (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6(4):549–559CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas M. Missimer
    • 1
    • 2
    Email author
  • Christiane Hoppe-Jones
    • 1
  • Khan Z. Jadoon
    • 1
  • Dong Li
    • 3
  • Samir K. Al-Mashharawi
    • 1
  1. 1.Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.U. A. Whitaker College of EngineeringFlorida Gulf Coast UniversityFort MyersUSA
  3. 3.Colorado School of MinesGoldenUSA

Personalised recommendations