Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

Modélisation multi-échelle des écoulements souterrains sous conditions climatiques tempérés dans le cadre de l’évaluation de la sécurité du site de stockage de déchets nucléaires de haut niveau propose à Forsmark en Suède

Modelado del flujo de agua subterránea multi-escala en condiciones de clima templado para la evaluación de seguridad del sitio propuesto como repositorio de residuos nucleares de alta actividad en Forsmark, Suecia

瑞典福什马克所选高强度核废料储藏地安全评价中温带气候条件下多尺度地下水流模拟

Modelação de fluxo multi-escala de águas subterrâneas durante condições climáticas temperadas para avaliação da segurança do proposto depósito de resíduos nucleares de alta atividade em Forsmark, Suécia

  • 933 Accesses

  • 25 Citations

Abstract

Forsmark in Sweden has been proposed as the site of a geological repository for spent high-level nuclear fuel, to be located at a depth of approximately 470 m in fractured crystalline rock. The safety assessment for the repository has required a multi-disciplinary approach to evaluate the impact of hydrogeological and hydrogeochemical conditions close to the repository and in a wider regional context. Assessing the consequences of potential radionuclide releases requires quantitative site-specific information concerning the details of groundwater flow on the scale of individual waste canister locations (1–10 m) as well as details of groundwater flow and composition on the scale of groundwater pathways between the facility and the surface (500 m to 5 km). The purpose of this article is to provide an illustration of multi-scale modeling techniques and the results obtained when combining aspects of local-scale flows in fractures around a potential contaminant source with regional-scale groundwater flow and transport subject to natural evolution of the system. The approach set out is novel, as it incorporates both different scales of model and different levels of detail, combining discrete fracture network and equivalent continuous porous medium representations of fractured bedrock.

Résumé

Forsmark en Suède a été proposé comme site pour le stockage en milieu géologique de combustibles nucléaires usagés de haut niveau, étant localisé à une profondeur d’environ 470 m dans une roche cristalline fracturé. L’évaluation de la sécurité d’un tel stockage a exigé une approche pluridisciplinaire pour évaluer l’impact des conditions hydrogéologiques et hydrogéochimiques à proximité du site de stockage et dans un contexte régional plus large. Evaluer les conséquences de libérations potentielles de radionucléides nécessite des informations spécifiques au site concernant les détails des écoulements d’eau souterraine à l’échelle de l’emplacement des casiers de stockage (1–10 m) ainsi que les détails des écoulements et de leur composition à l’échelle des cheminements d’eau souterraine entre les installations et la surface (500 m à 5 km). L’objet de cet article est de fournir une illustration des techniques de modélisation multi-échelle et les résultats obtenus lors de la combinaison des écoulements à l’échelle local dans les fractures autour des sources de contamination potentielle avec un écoulement d’eau souterraine à l’échelle régionale et du transport soumis à l’ évolution naturelle du système. L’approche définie est nouvelle, car elle intègre deux échelles différentes dans un modèle et différents niveaux de détail, combinant un réseau de fractures discrètes et un milieu poreux continu équivalent, pour représenter le substratum rocheux fracturé.

Resumen

Se ha propuesto a Forsmark en Suecia como un sitio de un repositorio geológico para combustible nuclear de alta actividad utilizado, para ser localizado a una profundidad de aproximadamente 470 m en roca cristalina fracturada. La evaluación de seguridad para el repositorio ha requerido un enfoque multidisciplinario para evaluar el impacto de las condiciones hidrogeológicas e hidrogeoquímicas cercanas al repositorio y en un contexto regional más amplio. La evaluación de las consecuencias de la liberación potencial de radionucleidos requiere información cuantitativa del sitio específico relativo a los detalles del flujo de agua subterránea en la escala de las localizaciones individuales de los depósitos de residuos (1–10 m) así como detalles del flujo de agua subterránea y la composición en la escala de trayectorias de agua subterránea entre la instalación y la superficie (500 m to 5 km). El propósito de este artículo es proporcionar una ilustración de las técnicas de modelado multiescala y los resultados obtenidos cuando se combinan aspectos de flujos a una escala local en fracturas alrededor de una fuente contaminante potencial con el flujo a escala regional del agua subterránea y el transporte sujeto a la evolución natural del sistema. El enfoque abordado es novedoso, en la medida que incorpora diferentes escalas de modelo y diferentes niveles de detalle, combinando redes de fracturas discretas y un medio poroso continuo de representaciones equivalentes del basamento fracturado.

摘要

瑞典的福什马克计划被选为废弃高强度核燃料地质储藏地,大约为470米之下的断裂结晶岩中。储藏地安全评价需要多方论证方法评估储藏地附近较大区域范围内水文地质和水文化学条件的影响。评价潜在放射性核素释放的后果需要有定量的场地特定的信息,包括单个废料储藏桶地点(1 到10 米)尺度的、与地下水流相关的详细情况及设施和地表之间地下水通道(500 米到5 公里)尺度的、地下水流和组分的详细情况。本文的目的就是论述多尺度模拟技术,并且论述潜在污染源周围断裂中局部尺度水流和系统自然演化制约下区域尺度地下水流和传输结合后获取的结果。所列方法新颖,因为这个方法把不同尺度模型和不同级别的详细情况结合在一起,包括把离散裂隙网络和断裂基岩相对应的连续孔隙介质结合在一起。

Resumo

Forsmark, na Suécia, foi proposto como local para depósito geológico de combustível nuclear usado de alta atividade, o qual será colocado a uma profundidade aproximada de 470 m em rochas cristalinas fraturadas. A avaliação de segurança para o depósito requereu uma abordagem multidisciplinar para avaliação do impacte das condições hidrogeológicas e hidrogeoquímicas próximas ao depósito e num contexto regional mais alargado. A avaliação das consequências da potencial libertação de radionuclídeos requere informação quantitativa específica do local em relação aos detalhes do fluxo de água subterrânea à escala das localizações dos contentores individuais de resíduos (1–10 m), bem como de detalhes do fluxo de água subterrânea e sua composição à escala dos percursos da água entre o local do depósito e a superfície (500 m to 5 km). O propósito deste artigo é providenciar uma ilustração das técnicas da modelação de fluxo multi-escala e dos resultados obtidos quando se combinam aspetos de fluxo de escala local em fraturas em redor de uma potencial fonte contaminante com fluxo e transporte de água subterrânea à escala regional sujeitos à evolução natural do sistema. A abordagem estabelecida é nova, uma vez que incorpora diferentes escalas do modelo e diferentes níveis de detalhe, combinando uma rede de fraturas discretas e representações de meios contínuos equivalentes ao maciço cristalino fraturado.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aarnes JE, Kippe V, Lie K-A, Rustad AB (2007) Modelling of multiscale structures in flow simulations for petroleum reservoirs. In: Geometric modelling, numerical simulation, and optimisation, part ll. Springer, Heidelberg, pp 307–360. doi:10.1007/978-3-540-68783-2

  2. Al Qassab HM, Al Khalifa MA, Al-Ali Z, Ameen M, Phillips R, Hartley L (2002) New integrated 3D-fracture modeling and flow simulation study: a giant Saudi Arabian carbonate reservoir. SPE-78295-MS, Soc. of Petrol. Eng., Richardson, TX. doi:10.2118/78295-MS

  3. AMEC (2013a) ConnectFlow technical summary document. AMEC/ENV/CONNECTFLOW/15. AMEC, Harwell Oxford, Oxfordshire, UK

  4. AMEC (2013b) ConnectFlow verification. AMEC/ENV/CONNECTFLOW/16. AMEC, Harwell Oxford, Oxfordshire, UK

  5. Andersson J-E, Nordqvist R, Nyberg G, Smellie J, Tirén S (1991) Hydrogeological conditions in the Finnsjön area: compilation of data and conceptual model. SKB TR-91-24, Svensk Kärnbränslehantering AB, Stockholm

  6. Andersson J, Skagius K, Winberg A, Lindborg T, Ström A (2013) Site descriptive modeling for a final repository for spent nuclear fuel in Sweden. Environ Earth Sci 69(3):1045–1060. doi:10.1007/s12665-013-2226-1

  7. ANDRA (2005) Dossier 2005 granite: safety analysis of a geological repository, ANDRA, Châtenay-Malabry, France

  8. Armitage P, Holton D, Jefferies NL, Myatt B J, Wilcock PM (1996) Groundwater flow through fractured rock at Sellafield. Final report, Nuclear Science and Technology Series, EUR 16870 EN, EC, Brussels

  9. Baghbanan A, Jing L (2007) Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int J Rock Mech Min Sci 44(5):704–719

  10. Basquet R, Jeannin L, Lange A, Bourbiaux B, Sarda S (2004) Gas-flow simulation in discrete fracture-network models. SPE 88985, Soc. of Petrol. Eng., Richardson, TX. doi:10.2118/88985-PA

  11. Berglund S, Kautsky U, Lindborg T, Selroos J-O (2009) Integration of hydrological and ecological modelling for the assessment of a nuclear waste repository. Hydrogeol J 17(1):95–113

  12. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884. doi:10.1016/S0309-1708(02)00042-8

  13. Bosson E, Gustafsson L-G, Sassner M (2008) Numerical modeling of surface hydrology and near surface hydrogeology at Forsmark: site descriptive modeling—SDM-Site Forsmark. SKB R-08-09, Svensk Kärnbränslehantering AB, Stockholm

  14. Bosson E, Sassner M, Sabel U, Gustafsson L-G (2010) Modelling of present and future hydrology and solute transport at Forsmark: SR-Site biosphere. SKB R-10-02, Svensk Kärnbränslehantering AB, Stockholm

  15. Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18(8):1839–1854. doi:10.1007/s10040-010-0640-y

  16. Cacas MC (1989) Développement d’un Modèle Tridemensionnel Stochastique Discret pour la Simulation de l’écoulement et des Transports de Masses et de Chaleur en Milieu Fracturé [Development of a three-dimensional discrete stochastic model for the simulation of flow and transport of mass and heat in a fractured medium]. PhD Thesis, Ecole des Mines de Paris, France

  17. Carrera J, Sanchez Vila X, Benet I, Medina A, Galarza G, Guimera J (1998) On matrix diffusion: formulations, solution methods and quantitative effects. Hydrogeol J 6(1):178–190

  18. Claesson J, Hellström G, Probert T (1992) Buoyancy flow in fractured rock with a salt gradient in the groundwater: a second study of coupled salt and thermal buoyancy. SKB TR-92-41, Svensk Kärnbränslehantering AB, Stockholm

  19. Crawford J (2008) Bedrock transport properties Forsmark: site descriptive modeling SDM-Site Forsmark. SKB R-08-48, Svensk Kärnbränslehantering AB, Stockholm

  20. Cvetkovic V, Selroos J-O, Cheng H (1999) Transport of reactive tracers in rock fractures. J Fluid Mech 378:335–356

  21. Dershowitz W (1985) Rock joint systems. PhD Thesis, MIT, Cambridge, MA, USA

  22. Dershowitz W, Winberg A, Hermanson J, Bygård J, Tullborg E-L, Andersson P, Mazurek M (2003) Äspö Hard Rock Laboratory. Äspö Task Force on modeling of groundwater flow and transport of solutes. Task 6C: a semi-synthetic model of block scale conductive structures at the Äspö HRL. Int. Prog. Rep. IPR–03–13, Svensk Kärnbränslehantering AB, Stockholm

  23. Follin S (2008) Bedrock hydrogeology Forsmark: site descriptive modeling—SDM-Site Forsmark. SKB R-08-95, Svensk Kärnbränslehantering AB, Stockholm

  24. Follin S, Hartley L (2014) Approaches to confirmatory testing of a groundwater flow model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22(2):333–349. doi:10.1007/s10040-013-1079-8

  25. Follin S, Stigsson M (2014) A transmissivity model for deformation zones in fractured crystalline rock and its possible correlation to in situ stress at the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22(2):299–311. doi:10.1007/s10040-013-1078-9

  26. Follin S, Johansson P-O, Hartley L, Jackson P, Roberts D, Marsic N (2007) Hydrogeological conceptual model development and numerical modelling using ConnectFlow: Forsmark modelling stage 2.2. SKB R-07-49, Svensk Kärnbränslehantering AB, Stockholm

  27. Follin S, Stephens MB, Laaksoharju M, Nilsson A-C, Smellie JAT, Tullborg E-L (2008) Modelling the evolution of hydrochemical conditions in the Fennoscandian Shield during Holocene time using multidisciplinary information. Appl Geochem 23(7):2004–2020. doi:10.1016/j.apgeochem.2008.02.022

  28. Follin S, Hartley L, Rhén I, Jackson P, Joyce S, Roberts D, Swift B (2014) A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22(2):313–331. doi:10.1007/s10040-013-1080-2

  29. Frampton A, Cvetkovic V (2010) Inference of field-scale fracture transmissivities in crystalline rock using flow log measurements. Water Resour Res 46(11):W11502

  30. Gustafson G, Gylling B, Selroos J-O (2009) The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks. Hydrogeol J 17(5):1031–1033

  31. Hartley L, Joyce S (2013) Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden. J Hydrol. doi:10.1016/j.jhydrol.2013.07.031

  32. Hartley L, Hoch A, Jackson P, Joyce S, McCarthy R, Rodwell W, Swift B, Marsic N (2006) Groundwater flow and transport modelling during the temperate period for the SR-Can assessment Forsmark area: version 1.2. SKB R-06-98, Svensk Kärnbränslehantering AB, Stockholm

  33. Hartley L, Hoek J, Swan D, Roberts D, Joyce S, Follin S (2009) Development of a Hydrogeological discrete fracture network model for the Olkiluoto site descriptive model 2008. Posiva working report 2009–61, Posiva Oy, Eurajoki, Finland

  34. Hedenström A, Sohlenius G, Strömgren M, Brydsten L, Nyman H (2008) Depth and stratigraphy of regolith at Forsmark: site descriptive modelling SDM-Site Forsmark. SKB R-08-07, Svensk Kärnbränslehantering AB, Stockholm

  35. Hoch AR, Jackson CP (2004) Rock-matrix diffusion in transport of salinity: implementation in CONNECTFLOW. SKB R-04-78, Svensk Kärnbränslehantering AB, Stockholm

  36. Jackson CP, Hoch AR, Todman S (2000) Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium. Water Resour Res 36(1):189–202

  37. Joyce S, Simpson T, Hartley L, Applegate D, Hoek J, Jackson P, Swan D, Marsic N, Follin S (2010) Groundwater flow modelling of periods with temperate climate conditions: Forsmark. SKB R-09-20, Svensk Kärnbränslehantering AB, Stockholm

  38. Karimi-Fard M, Gong B, Durlofsky LJ (2006) Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resour Res 42(10), W10423. doi:10.1029/2006WR005015

  39. Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2,000,000. Geological Surveys of Finland, Espoo; Norway, Trondheim; and Sweden, Uppsala and the North-West Department of Natural Resources of Russia, Rovaniemi

  40. Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83

  41. Laaksoharju M, Smellie JAT, Tullborg E-L, Gimeno M, Hallbeck L, Molinero J, Waber N (2008) Bedrock hydrogeochemistry Forsmark: site descriptive modeling—SDM-Site Forsmark. SKB R-08-47, Svensk Kärnbränslehantering AB,, Stockholm

  42. Lee SH, Lough MF, Jensen CL (2001) Hierarchical modeling of flow in naturally fractured formations with multiple length scales. Water Resour Res 37(3):443–455. doi:10.1029/2000WR900340

  43. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658

  44. NEA (2009) International experiences in safety cases for geological repositories (INTESC). NEA no. 6251, Organisation for Economic Co-operation and Development, Paris

  45. Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophys Res 85:4379–4397

  46. Neretnieks I (1994) Nuclear waste repositories in crystalline rock: an overview of nuclide transport mechanisms. In: Proc. XVIIIth Int. Symp. on the Scientific Basis for Nuclear Waste Management. Mat. Res. Soc., Warendale, PA, pp 24–26

  47. Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13(1):124–147. doi:10.1007/s10040-004-0397-2

  48. Neuman SP (2008) Multiscale relationships between fracture length, aperture, density and permeability. Geophys Res Lett 35, L22402. doi:10.1029/2008GL035622

  49. Niemi A, Kontio K, Kuusela-Lahtinen A, Poteri A (2000) Hydraulic characterization and upscaling of fracture networks based on multiple-scale well test data. Water Resour Res 36(12):3481–3497. doi:10.1029/2000WR900205

  50. NRC (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Research Council, Washington, DC

  51. Odén M, Niemi A, Tsang C-F, Öhman J (2008) Regional channelized transport in fractured media with matrix diffusion and linear sorption. Water Resour Res 44(2), W02421. doi:10.1029/2006WR005632

  52. Odling NE (2001) The scaling of hydraulic conductivity in rock fracture zones. Geophys Res Lett 28(15):3019–3022. doi:10.1029/2000GL011863

  53. Öhberg A (2006) Investigation methods and equipment used by Posiva. Posiva technical report WR 2006–81, Posiva, Eurajoki, Finland

  54. Öhberg A, Rouhiainen PR (2000) Posiva groundwater flow measuring techniques. Posiva technical report WR 2000–12, Posiva, Eurajoki, Finland

  55. Öhman J, Niemi A, Tsang C-F (2005) A regional-scale particle-tracking method for nonstationary fractured media. Water Resour Res 41(3), W03016. doi:10.1029/2004WR003498

  56. Olofsson I, Simeonov A, Stephens MB, Follin S, Nilsson A-C, Röshoff K, Lindberg U, Lanaro F, Fredriksson A, Persson L (2007) Site descriptive modelling: Forsmark stage 2.2—a fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination. SKB R-07-15, Svensk Kärnbränslehantering AB,, Stockholm

  57. Ophori DU (2004) A simulation of large-scale groundwater flow and travel time in a fractured rock environment for waste disposal purposes. Hydrol Process 18(9):1579–1593. doi:10.1002/hyp.1407

  58. Painter S (2006) Effect of single-fracture aperture variability on field-scale transport. SKB R-06-25, Svensk Kärnbränslehantering AB,, Stockholm

  59. Robinson PC (1984) Connectivity, flow and transport in network of fractured media. PhD Thesis, Oxford University, UK

  60. Rouhiainen P, Sokolnicki M (2005) Difference flow logging in borehole KFM06A. SKB P-05-15, Svensk Kärnbränslehantering AB,, Stockholm

  61. Salas J, José Gimeno M, Auqué L, Molinero J, Gómez J, Juárez I (2010) SR-Site: hydrogeochemical evolution of the Forsmark site. SKB TR-10-58, Svensk Kärnbränslehantering AB,, Stockholm

  62. Samardzioska T, Popov V (2005) Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media. Adv Water Resour 28(3):235–255. doi:10.1016/j.advwatres.2004.11.002

  63. Schwartz MO (2012) Modelling radionuclide transport in large fractured-media systems: the example of Forsmark, Sweden. Hydrogeol J 20(4):673–687

  64. Selroos J-O, Follin S (2014a) Overview of hydrogeological site-descriptive modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22(2):295–298. doi:10.1007/s10040-013-1077-x

  65. Selroos J-O, Follin S (2014b) Overview of hydrogeological safety assessment modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J. doi:10.1007/s10040-014-1163-8

  66. Selroos J-O, Painter S (2012) Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden). Hydrogeol J 20(8):1467–1481. doi:10.1007/s10040-012-0888-5

  67. Selroos J-O, Cheng H, Painter S, Vidstrand P (2012) Radionuclide transport during glacial cycles: comparison of two approaches for representing flow transients. J Phys Chem Earth. doi:10.1016/j.pce.2012.10.003

  68. Shapiro AM, Hsieh PA, Burton WC, Walsh GJ (2007) Integrated multi-scale characterization of ground-water flow and chemical transport in fractured crystalline rock at the Mirror Lake Site, New Hampshire. Geophys. Monogr. Ser. 171, AGU, Washington, DC, pp 201–225. doi:10.1029/171GM15

  69. Skagius K, Ström A, Andersson J, Ahlbom K, Lindborg T, Winberg A (2008) Site-descriptive modelling for geoscientific understanding of the Forsmark site, Sweden. In: Proc. of the 12th Int. High-Level Radioactive Waste Management Conference (IHLRWM): Steps Toward Reality for Safe Disposal, Las Vegas, NV, September 7–11, 2008

  70. SKB (2010a) Climate and climate related issues for the safety assessment SR-Site. SKB TR-10-49, Svensk Kärnbränslehantering AB, Stockholm

  71. SKB (2010b) Biosphere analyses for the safety assessment SR-Site: synthesis and summary of results. SKB TR-10-09, Svensk Kärnbränslehantering AB, Stockholm

  72. SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark: main report of the SR-Site project. SKB TR-11-01, Svensk Kärnbränslehantering AB, Stockholm

  73. Söderbäck B (ed) (2008) Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas: site descriptive modelling SDM-Site. SKB R-08-19, Svensk Kärnbränslehantering AB, Stockholm

  74. Stephens MB, Fox A, La Pointe P, Simeonov A, Isaksson H, Hermanson J, Öhman 714 J (2007) Geology Forsmark: site descriptive modelling—Forsmark stage 2.2. SKB R-07-45, Svensk Kärnbränslehantering AB, Stockholm

  75. Thegerström C, Olsson O (2011) The license application for the KBS-3-system: a milestone for the Swedish spent fuel disposal program. 13th Int. High-Level Radioactive Waste Management Conference 2011 (IHLRWMC 2011), vol 1, Albuquerque, NM, April 2011, pp 184–192

  76. Zhang Y, Baeumer B, Reeves DM (2010) A tempered multiscaling stable model to simulate transport in regional-scale fractured media. Geophys Res Lett 37(11). doi:10.1029/2010GL043609

  77. Zhou Q, Liu H-H, Bodvarsson GS, Oldenburg CM (2003) Flow and transport in unsaturated fractured rock: effects of multiscale heterogeneity of hydrogeologic properties. J Contam Hydrol 60(1–2):1–30. doi:10.1016/S0169-7722(02)00080-3

Download references

Acknowledgements

This research work has been funded by the Swedish Nuclear Fuel and Waste Management Company (SKB). We thank Jan-Olof Selroos and Sven Follin for their reviews of the manuscript, as well as two anonymous reviewers and David Boutt for their thorough and helpful comments. All SKB reports referred to in this article, as well as the underlying data reports, can be downloaded from the SKB website—http://www.skb.se/; click on “Publications”, and then enter the report number, e.g. “R-09-20”. ConnectFlow documentation can be downloaded from http://www.connectflow.com/documentation.htm

Author information

Correspondence to Steven Joyce.

Additional information

This article belongs to a series describing hydrogeological safety assessment modeling for the proposed high-level nuclear waste repository site at Forsmark, Sweden

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joyce, S., Hartley, L., Applegate, D. et al. Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22, 1233–1249 (2014). https://doi.org/10.1007/s10040-014-1165-6

Download citation

Keywords

  • Fractured rock
  • Numerical modeling
  • Temperate climate
  • Sweden
  • Forsmark