Skip to main content
Log in

Investigating the role of hydromechanical coupling on flow and transport in shallow fractured-rock aquifers

Etude du rôle du couplage hydromécanique sur les écoulements et le transport dans des aquifères fracturés peu profonds

Investigación del rol del acoplamiento hidromecánico en el flujo y transporte de acuíferos someros de rocas fracturadas

浅层断裂岩含水层中水流和传输的流体力学耦合作用调查

Investigação do papel do acoplamento hidromecânico no fluxo e transporte em aquíferos pouco profundos em rochas fraturadas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Fractured-rock aquifers display spatially and temporally variable hydraulic conductivity generally attributed to variable fracture intensity and connectivity. Empirical evidence suggests fracture aperture and hydraulic conductivity are sensitive to in situ stress. This study investigates the sensitivity of fractured-rock hydraulic conductivity, groundwater flow paths, and advection-dominated transport to variable shear and normal fracture stiffness magnitudes for a range of deviatoric stress states. Fracture aperture and hydraulic conductivity are solved for analytically using empirical hydromechanical coupling equations; groundwater flow paths and ages are then solved for numerically using groundwater flow and advection-dispersion equations in a traditional Toth basin. Results suggest hydraulic conductivity alteration is dominated by fracture normal closure, resulting in decreasing hydraulic conductivity and increasing groundwater age with depth, and decreased depth of long flow paths with decreasing normal stiffness. Shear dilation has minimal effect on hydraulic conductivity alteration for stress states investigated here. Results are interpreted to suggest that fracture normal stiffness influences hydraulic conductivity of hydraulically active fractures and, thus, affects flow and transport in shallow (<1 km) fractured-rock aquifers. It is suggested that observed depth-dependent hydraulic conductivity trends in fractured-rock aquifers throughout the world may be partly a manifestation of hydromechanical phenomena.

Résumé

Les aquifères fissures présentent une variabilité spatiale et temporelle de la conductivité hydraulique de manière générale attribuée à l’intensité et connectivité variable des fractures. L’évidence empirique suggère que l’ouverture des fractures et la conductivité hydraulique sont sensibles aux contraintes in situ. Cette étude examine la sensibilité de la conductivité hydraulique en contexte d’aquifère fissuré, l’organisation des écoulements souterrains, et le transport dominé par la convection au cisaillement et aux grandeurs de la rigidité de fractures normales pour une gamme d’états de contraintes déviatoriques. L’ouverture de la fracture et la conductivité hydraulique sont résolues à l’aide de solutions analytiques empiriques couplant l’hydromécanique; les écoulements d’eau souterraine et les âges sont alors résolues de manière numérique en utilisant les équations des écoulements souterrains et de convection–dispersion dans un modèle classique de bassin de Toth. Les résultats suggèrent que l’altération de la conductivité hydraulique est dominée par la fermeture des fractures normales, se traduisant par une diminution de la conductivité hydraulique et par l’augmentation de l’âge de l’eau souterraine avec la profondeur, et la diminution de la profondeur des longs trajets d’écoulement en fonction de la diminution de la rigidité normale. La dilation de cisaillement a un effet minimal sur l’altération de la conductivité hydraulique pour les conditions de contraintes étudiées. Les résultats interprétées suggèrent que la rigidité de la fracture normale influence la conductivité hydraulique des fractures activement du point de vue hydraulique, et ainsi affecte l’organisation des écoulements et le transport dans les aquifères fracturés peu profonds (<1 km). Il est suggéré que les tendances observées concernant la conductivité hydraulique en fonction de la profondeur dans les aquifères fracturés de par le monde peuvent être en partie le siège de phénomènes hydromécaniques.

Resumen

Los acuíferos en rocas fracturadas manifiestan una conductividad hidráulica espacialmente y temporalmente variable generalmente atribuida a la intensidad y conectividad variable de la fractura. La evidencia empírica sugiere que la apertura de la fractura y la conductividad hidráulica son sensibles a la tensión in situ. Este estudio investiga la sensibilidad de la conductividad hidráulica de la roca fracturada, las trayectorias del flujo de agua subterránea, y el transporte dominado por la advección respecto a las magnitudes del esfuerzo de cizalla y de la rigidez normal de las fracturas para un intervalo de estados de tensión. La apertura de las fracturas y la conductividad hidráulica se resuelven analíticamente usando ecuaciones empíricas hidromecánicas acopladas, trayectorias del flujo y edades del agua subterránea que son luego resueltas numéricamente usando el flujo de agua subterránea y ecuaciones de advección dispersión en una cuenca Toth tradicional. Los resultados sugieren que la alteración de la conductividad hidráulica está dominada por el cierre normal de las fracturas, lo que resulta en una conductividad hidráulica decreciente y una edad creciente del agua subterránea con la profundidad, y profundidad decreciente de trayectorias largas de flujo con la la rigidez normal decreciente. La dilatación por cizalla tiene un efecto mínimo sobre la alteración de la conductividad hidráulica para los estados de tensión aquí investigados. Los resultados interpretados sugieren que la rigidez normal de la fractura influye en la conductividad hidráulica de las fracturas hidráulicamente activas, y así afecta el flujo y transporte en acuíferos someros de rocas fracturadas (<1 km). Se sugiere que las tendencias observadas de la conductividad hidráulica dependiente de la profundidad en los acuíferos de rocas fracturadas a lo largo del mundo pueden ser parcialmente una manifestación de fenómenos hidromecánicos.

摘要

断裂岩含水层时空上显示出多变的水力传导率,这一般被认为是多变的断裂强度和连接度造成的。经验证据显示,断裂开度和水力传导率对原位应力非常敏感。本研究调查了断裂岩水力传导率、地下水流路径和平流主导的传输对一系列偏应力状态下多变的剪切和正常的断裂硬度量级的敏感性。采用经验流体力学耦合方程,解析了断裂开度和水力传导率;然后,采用地下水流和平流分散方程得到了传统特斯盆地中的地下水流路径和年龄。结果显示,水力传导率变更受断裂正常封闭度的控制,导致随深度增加,水利传导率降低和地下水年龄增加以及随正常硬度的降低,长的流径深度降低。对这里所调查的应力状态来说,剪切扩张对水力传导率的影响最小。解译的结果显示,断裂正常的硬度影响水力上活跃的断裂的水力传导率,从而影响浅层(<1 km)断裂岩含水层的水流和传输。表明世界上断裂岩含水层中观测的与深度有关的水力传导率可能在一定程度上显示出了流体力学现象。

Resumo

Os aquíferos fraturados apresentam uma condutividade hidráulica variável no espaço e no tempo, geralmente atribuída à variabilidade da intensidade e da conetividade das fraturas. Evidências empíricas sugerem que a abertura das fraturas e a condutividade hidráulica são sensíveis à tensão local. Este estudo investiga a sensibilidade da condutividade hidráulica de rochas fraturadas, dos padrões de fluxo subterrâneo e do transporte dominado por adveção, em relação a magnitudes variáveis de rigidez das fraturas normais e de cisalhamento, para um conjunto de desvios no estado de tensão. A abertura das fraturas e a condutividade hidráulica são determinados analiticamente usando equações de acoplamento hidromecânico empíricas; a idade e os percursos do fluxo de águas subterrâneas são então resolvidos numericamente usando equações do fluxo subterrâneo e de adveção-dispersão para uma bacia tradicional Toth. Os resultados sugerem que a modificação da condutividade hidráulica é dominada pelo fecho das fraturas normais, resultando na diminuição da condutividade hidráulica e no aumento da idade de água subterrânea com a profundidade, e numa diminuição da profundidade dos percursos de fluxo longos com a diminuição da rigidez normal. A dilatação por cisalhamento tem um efeito mínimo sobre a alteração da condutividade hidráulica para os estados de tensão aqui investigados. Os resultados são interpretados para sugerir que a rigidez das fraturas influencia a condutividade hidráulica das fraturas hidraulicamente ativas e, portanto, afeta o fluxo e o transporte em aquíferos fraturados pouco profundos (<1 km). É sugerido que as tendências observadas para a dependência entre a condutividade hidráulica e a profundidade em aquíferos de rochas fraturadas em todo o mundo possa ser, em parte, uma manifestação de fenómenos hidromecânicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alm P (1999) Hydro-mechanical behavior of a pressurized single fracture: an in situ experiment. PhD Thesis, Chalmers University of Technology, Goteborg, Sweden

    Google Scholar 

  • Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech 20:249–268

    Article  Google Scholar 

  • Barton Colleen A, Zoback Mark D, Daniel M (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686

    Article  Google Scholar 

  • Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22:121–140

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884

    Article  Google Scholar 

  • Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854

    Article  Google Scholar 

  • Brown ET, Hoek E (1978) Trends in relationships between measured in-situ stresses and depth. Int J Rock Mech Min Sci Geomech Abs 15:211–215

    Article  Google Scholar 

  • Brown SR, Bruhn RL (1998) Fluid permeability of deformable fracture networks. J Geophys Res 103:2489–2500

    Article  Google Scholar 

  • Burbey TJ, Hisz D, Murdoch LC, Zhang M (2012) Quantifying fractured crystalline-rock properties using well tests, earth tides and barometric effects. J Hydrol 414–415:317–328

    Article  Google Scholar 

  • Caine J, Tomusiak S (2003) Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range. Geol Soc Am Bull 115:1410–1424

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Rutqvist J, Tsang C-F, Thorval A (2006) Hydromechanical modeling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. Int J Rock Mech Min Sci 43:1062–1082

    Article  Google Scholar 

  • Cardenas MB, Jiang XW (2010) Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46, W11538

    Google Scholar 

  • Chen M, Bai M, Roegiers J-C (1999) Permeability tensors of anisotropic fracture networks. Math Geol 31(4):1999

    Article  Google Scholar 

  • Chen Y, Chuangbing Z, Sheng Y (2007) Formulation of strain-dependent hydraulic conductivity for a fractured rock mass. Int J Rock Mech Min Sci 44:981–996

    Article  Google Scholar 

  • Chesnaux R, Allen DM, Jenni S (2009) Regional fracture network permeability using outcrop scale measurements. Eng Geol 108:259–271

    Article  Google Scholar 

  • Chou P-Y, Lo H-C, Hsu S-M, Lin Y-T, Huang C-C (2012) Prediction of hydraulically transmissive fractures using geological and geophysical attributes: a case history from the mid Jhuoshuei River basin, Taiwan. Hydrogeol J 20:1101–1116

    Article  Google Scholar 

  • Clauser C (1992) Permeability of crystalline rocks. EOS Trans Am Geophys Union 33:45–94

    Google Scholar 

  • Council NR (1996) Rock fracture and fluid flow: contemporary understandings and applications. National Academy Press, Washington, DC

    Google Scholar 

  • Davis S, Turk L (1964) Optimum depth of wells in crystalline rock. Ground Water 2:6–11

    Article  Google Scholar 

  • DeSimone LA, Barbaro JR (2012) Yield of bedrock wells in the Nashoba Terrane, central and eastern Massachusetts. US Geol Surv Sci Invest Rep 2012-5155

  • Evans KF (2005) Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. critical stress and fracture strength. J Geophys Res 10, B04204

    Google Scholar 

  • Fleeger GM, Goode DJ (1999) Hydraulic effects of the Pymatuning earthquake. US Geol Surv Water Resour Invest Rep 99-4170

  • Fransson A (2009) Literature survey: relations between stress change, deformation and transmissivity for fractures and deformation zones based on in situ investigations. SKB technical report R-09-13. Svensk Karnbranslehantering, Stockholm

    Google Scholar 

  • Golder Associates (2004) FracMan Discrete Feature Simulator: user documentation, version 4.0. Golder, Seattle

    Google Scholar 

  • Gomez JD, Wilson JL (2013) Age distributions and dynamically changing hydrologic systems: exploring topography-driven flow. Water Resour Res 1503–1522

  • Gonzalez de Vallejo LI, Hijazo T (2008) A new method of estimating the ratio between in-situ rock stresses and tectonic based on empirical and probabilistic analyses. Eng Geol 101:185–194

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296

    Article  Google Scholar 

  • Goodman RE (1976) Methods of geological engineering in discontinuous rocks. West, New York

    Google Scholar 

  • Griffith AW, Sanz PF, Pollard DD (2009) Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks. Pure Appl Geophys 166:1595–1627

    Article  Google Scholar 

  • Halihan T, Love A, Sharp JM Jr (2005) Identifying connections in a fractured rock aquifer using ADFTs. Ground Water 43:327–335

    Article  Google Scholar 

  • Heiland J (2003) Laboratory testing of coupled hydro-mechanical processes during rock deformation. Hydrogeol J 11:122–141

    Article  Google Scholar 

  • Herget G (1987) Stress assumptions for underground excavations in the Canadian Shield. Int J Rock Mech Miner Sci Geomech Abstr 24:95–97

    Article  Google Scholar 

  • Hisz DB, Ebenhack J, Germanovich LN, Murdoch LC (2010) Characterization of fractured rock during well tests using Tilt-X, a portable tiltmeter and extensometer for multi-component deformation measurements. AGU Fall Meeting, AGU, Washington, DC

  • Hsieh P (1996) An overview of field investigations of fluid flow in fractured crystalline rocks on the scale of hundreds of meters. In: Stevens P, Nicholson T (eds) Joint U.S. Geological Survey, Nuclear Regulatory Commission Workshop on Research Related to Low-Level Radioactive Waste Disposal, May 4–6,1993. US Geol Surv Water-Resour Invest Rep 95–4015

  • Hsieh P, Shapiro A (1996) Hydraulic characteristics of fractured bedrock underlying the FSE well field at the Mirror Lake site, Grafton County, New Hampshire. In: Morganwalp D, Aronson D (eds) U.S. Geological Survey Toxic Substances Hydrology Program: proceedings of the technical meeting, Colorado Springs, CO. US Geol Surv Water Resour Invest Rep 94-4015, pp 127–130

  • Hurd O, Zoback MD (2012) Intraplate earthquake, regional stress and fault mechanics in the central and eastern U.S. and southeastern Canada. Tectonophysics 581:182–192

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (1999) Geological implications of a permeability-depth curve for the continental crust. Geology 27:1107–1110

    Article  Google Scholar 

  • Ito T, Zoback MD (2000) Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole. Geophys Res Lett 27:1045–1048

    Article  Google Scholar 

  • Jeager JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, Malden, MA

    Google Scholar 

  • Jiang XW, Wan L, Cardenas MB, Ge S, Wang XS (2010) Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys Res Lett 37, L05403

    Google Scholar 

  • Jiang XW, Wan L, Ge S, Cao GL, Hou GC, Hu FS, Wang SX, Li H, Liang SH (2012) A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resour Res 48, W12502

    Google Scholar 

  • Jiang Y et al (2004) Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition. Int J Rock Mech Min Sci 41:275–286

    Article  Google Scholar 

  • Jiang Y, Bo L, Yosihiko T (2006) Estimating the relation between surface roughness and mechanical properties of rock joints. Int J Rock Mech Min Sci 43:837–846

    Article  Google Scholar 

  • Jiang Xiao-Wei, Wan Li, Wang Xu-Shen, Liang Si-Hai, and Hu, Bill X (2009) Estimation of fracture normal stiffness using a transmissivity-depth correlation. Int J Rock Mech Min Sci 46:51–58

  • Johnson C, Dunstan A (1998) Lithology and fracture characterization from drilling investigations in the Mirror Lake area: from 1979 through 1995 in Grafton County New Hampshire. US Geol Surv Water Resour Invest Rep 98-4183

  • Karasaki K, Freifeld B, Cohen A, Grossenbacher K, Cook P, Vasco D (2000) A multidisciplinary fractured rock characterization study at Raymond field site, Raymond, CA. J Hydrol 236:17–34

    Article  Google Scholar 

  • Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23:145–161

    Article  Google Scholar 

  • Lattman LH, Parizek RR (1964) Relationship between fracture traces and the occurrence of ground water in carbonate rocks. J Hydrol 2:73–91

    Article  Google Scholar 

  • Laubach SE, Olson JE, Gale JFW (2004) Are open fractures necessarily aligned with maximum horizontal stress? Earth Planet Sci Lett 222:191–195

    Article  Google Scholar 

  • Legrand H (1954) Geology and ground water in the Statesville area, North Carolina. Bulletin, North Carolina Division of Mineral Resources, Greensboro, NC

    Google Scholar 

  • Legrand H (1967) Ground water of the Piedmont and Blue Ridge provinces in the southeastern states. US Geol Surv Circ 538

  • Long JCS, Witherspoon PA (1985) The relationship of the degree of interconnection to permeability in fracture networks. J Geophys Res 90:3087–3098

    Article  Google Scholar 

  • Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658

    Article  Google Scholar 

  • Mabee SB, Hardcastle KC (1997) Analyzing outcrop-scale fracture features to supplement investigations of bedrock aquifers. Hydrogeol J 5:21–36

    Article  Google Scholar 

  • Manda AK, Mabee SB (2010) Comparison of three fracture sampling methods for layered rocks. Int J Rock Mech Min Sci 47:218–226

    Article  Google Scholar 

  • Manda AK, Mabee SB, Wise DU (2008) Influence of rock fabric on fracture attribute distribution and implications for groundwater flow in the Nashoba Terrane, eastern Massachusetts. J Struct Geol 30:464–477

    Article  Google Scholar 

  • Manda AK, Mabee SB, Boutt DF, Cooke ML (2013) A method of estimating bulk potential permeability in fractured-rock aquifers using field-derived fracture data and type curves. Hydrogeol J 21:357–369

    Article  Google Scholar 

  • Martin CD (1990) Characterizing in situ stress domains at the AECL Underground Research Laboratory. Can Geotech J 27:631–646

    Article  Google Scholar 

  • Mattila J, Tammisto E (2012) Stress-controlled fluid flow in fractures at the site of a potential nuclear waste repository, Finland. Geology 40:299–302

    Article  Google Scholar 

  • Min KB, Rutqvist J, Tsang CF, Jing L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci Geomech 41:1191–1210

    Article  Google Scholar 

  • Moos D, Zoback MD (1993) Near-surface, “thin skin” reverse faulting stresses in the southeastern United States. Int J Rock Mech Min Sci Geomech Abstr 30:965–971

    Article  Google Scholar 

  • Morin RH, Savage WZ (2003) Effects of crustal stresses on fluid transport in fractured rock: case studies from northeastern and southwestern USA. Hydrogeol J 11:100–112

    Article  Google Scholar 

  • Mortimer L, Aydin A, Simmons CT, Love AJ (2011) Is in situ stress important to groundwater flow in shallow fractured rock aquifers? J Hydrol 399:185–200

    Article  Google Scholar 

  • Murdoch LC, Hisz DB, Ebenhack JF, Fowler DE, Tiedeman CR, Germanovich LN (2009) Analysis of hydromechanical well tests in fractured sedimentary rock at the NAWC Site, New Jersey. Asheville 2009, the 43rd US Rock Mechanics Symposium and 4th U.S.–Canada Rock Mechanics Symposium, Asheville, NC, 8 pp

  • Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147

    Article  Google Scholar 

  • Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J 11:41–83

    Article  Google Scholar 

  • Oda M (1985) Permeability tensor for discontinuous rock masses. Geotechnique 35:483–495

    Article  Google Scholar 

  • Ohman J, Niemi A, Tsang CF (2005) Probabilistic estimation of fracture transmissivity from wellbore hydraulic data accounting for depth-dependent anisotropic rock stress. Int J Rock Mech Min Sci Geomech Abstr 42:793–804

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38:317–329

    Article  Google Scholar 

  • Paillet F (1985) Geophysical well log data for study of water flow in fractures near Mirror Lake, New Hampshire. US Geol Surv Open-File Rep 85-340

  • Paillet F, Kapucu K (1989) Fracture characterization and fracture-permeability estimates from geophysical logs in the Mirror Lake watershed, New Hampshire. US Geol Surv Water Resour Invest Rep 89-4058

  • Park BY, Kim KS, Kwon S, Kim C, Bae DS, Hartley LJ, Lee HK (2002) Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock. Eng Geol 66:127–141

    Article  Google Scholar 

  • Park YJ, Cornaton FJ, Normani SD, Sykes JF, Sudicky EA (2008) Use of groundwater lifetime expectancy for the performance assessment of a deep geologic radioactive waste repository: 2. application to a Canadian Shield environment. Water Resour Res 44, W04407

    Google Scholar 

  • Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37:245–262

    Article  Google Scholar 

  • Robinson PC (1983) Connectivity of fracture systems, a percolation theory approach. J Phys A Math Gen 16:605–614

    Article  Google Scholar 

  • Rojstaczer SA, Ingebritsen SE, Hayba DO (2008) Permeability of continental crust influenced by internal and external forcing. Geofluids 8:128–139

    Article  Google Scholar 

  • Rutqvist J (1995) Coupled stress-flow properties of rock joints from hydraulic field testing. PhD Thesis, Royal Institute of Technology, Stockholm

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40

    Article  Google Scholar 

  • Rutqvist J, Norrishad J, Tsang C-F, Stephansson O (1998) Determination of fracture storativity in hard rocks using high-pressure injection testing. Water Resour Res 34:2551–2560

    Article  Google Scholar 

  • Sagar B, Runchal A (1982) Hydraulic conductivity of fractured rock: effect of fracture size and data uncertainties. Water Resour Res 18:266–274

    Article  Google Scholar 

  • Schweisinger T, Svenson EJ, Murdoch LC (2009) Introduction to hydromechanical well tests in fractured rock aquifers. Ground Water 47:69–79

    Article  Google Scholar 

  • Schweisinger T, Svenson EJ, Murdoch LC (2011) Hydromechanical behavior during constant-rate pumping tests in fractured gneiss. Hydrogeol J 19:963–980

    Article  Google Scholar 

  • Seaton WJ, Burbey TJ (2005) Influence of ancient thrust faults on the hydrogeology of the Blue Ridge Province. Ground Water 43:301–313

    Article  Google Scholar 

  • Shapiro A, Hsieh P, Burton W, Walsh G (2007) Integrated multi-scale characterization of groundwater flow and chemical transport in fractured crystalline rock at the Mirror Lake site, New Hampshire. In: Hyndman F, Day-Lewis DW, Singha K (eds) Subsurface hydrology: data integration for properties and processes. Geophysical Monograph Series. American Geophysical Union, Washington, DC

    Google Scholar 

  • Sneed M, Galloway DL, Cunningham WL (2003) Earthquakes: rattling the earth’s plumbing system. US Geol Surv Fact Sheet 096-03

  • Snow D (1968) Rock fracture spacings, openings, and porosities. Am Soc Civ Eng Soil Mech Found J 94:73–91

    Google Scholar 

  • Stober I (2011) Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany. Hydrogeol J 19:685–699

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of crystalline basement. Hydrogeol J 15(2):213–224

    Article  Google Scholar 

  • Surrette M, Allen DM, Journeay M (2007) Regional evaluation of hydraulic properties in variably fractured rock using a hydrostructural domain approach. Hydrogeol J 16:11–30

    Article  Google Scholar 

  • Svenson E, Schweisinger T, Murdoch LC (2007) Analysis of the hydromechanical behavior of a flat-lying fracture during a slug test. J Hydrol 347:35–47

    Article  Google Scholar 

  • Svenson E, Schweisinger T, Murdoch LC (2008) Field evaluation of the hydromechanical behavior of flat-lying fractures during slug tests. J Hydrol 359:30–45

    Article  Google Scholar 

  • Talbot CJ, Sirat M (2001) Stress control of hydraulic conductivity in fracture-saturated Swedish bedrock. Eng Geol 61:145–153

    Article  Google Scholar 

  • Tiedeman C, Hsieh P (2001) Assessing an open-well aquifer test in fractured crystalline rock. Ground Water 39:68–78

    Article  Google Scholar 

  • Toth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68(16):4795–4812

    Article  Google Scholar 

  • Tsoflias GP, Halihan T, Muldoon MA (2004) Fracture fluid flow properties investigated using GPR and hydraulic testing methods. Tenth Int. Conf. on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004, pp 521–524

  • Zangerl C, Evans KF, Eberhardt E, Loew S (2008) Normal stiffness of fractures in granitic rock: a compilation of laboratory and in situ experiments. Int J Rock Mech Min Sci 45:1500–1507

    Article  Google Scholar 

  • Zhang X, Sanderson DJ (1995) Anisotropic features of geometry and permeability in fractured rock masses. Eng Geol 40:65–75

    Article  Google Scholar 

  • Zhang X, Sanderson DJ, Harkness RM, Last NC (1996) Evaluation of the 2-D permeability tensor for fractured rock masses. Int J Rock Mech Min Sci Geomech Abstr 33:19–37

    Article  Google Scholar 

Download references

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under Grant Number EAR-0919357. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Earnest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earnest, E., Boutt, D. Investigating the role of hydromechanical coupling on flow and transport in shallow fractured-rock aquifers. Hydrogeol J 22, 1573–1591 (2014). https://doi.org/10.1007/s10040-014-1148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1148-7

Keywords

Navigation