Skip to main content

Advertisement

Log in

Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens

Détermination des âges au 14C et test du comportement conservative du 14C dissous dans un aquifère carbonaté du Yucca Flat, Nevada (Etats Unis d’Amérique) à partir du 36Cl des eaux souterraines et des amas fossiles de débris laissés par des rats.

Pruebas de las edades 14C y comportamiento conservativo del 14C disuelto en un acuífero carbonático en Yucca Flat, Nevada (EEUU), usando 36Cl de agua subterránea y madrigueras de ratas

利用 地下水和堆肥中的 36Cl测定(美国)内华达州Yucca Flat地区碳酸盐含水层中14C年龄和溶解14C的持恒行为

Testando as idades de 14C e o comportamento conservativo do 14C dissolvido num aquífero carbonatado em Yucca Flat, Nevada (EUA), usando o 36Cl da água subterrânea e depósitos de acumulação de detritos criados por ratos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.

Résumé

Les âges corrigés des eaux souterraines au 14C d’un aquifère carbonaté du Yucca Flat sur l’ancien site test du Nevada (actuellement le site national de la sécurité du Nevada), Etats Unis d’Amérique, ont été évalués en comparant les variations temporelles des rapports estimés de 36Cl/Cl des eaux souterraines avec celles des âges au 14C avec les données publiées dans les enregistrements météoriques des variations de 36Cl/Cl préservées dans les amas fossiles de débris laissés par des rats (amas de fragments de plantes, de matière fécale et d’urine). Un bon accord entre ces enregistrements indique que l’âge des eaux souterraines au 14C est raisonnable et que le 14C se déplace avec les chlorures sans sorption sur la matrice carbonatée de la roche ou sur les minéralisations carbonatées des fractures, malgré des résultats opposés sur des expérimentations en laboratoire. Les âges des eaux souterraines au 14C sont compatibles avec les autres évidences hydrologiques qui indiquent que l’importante infiltration du bassin a cessé il y a entre 8,000 et 10,000 ans et que la recharge de l’aquifère carbonaté est issue d’un drainage d’eaux anciennes au travers de formations peu perméables de tuf le long des principales failles. Cette interprétation est étayée par les différents âges relatifs ainsi que par les différences de charge hydraulique entre les aquifères alluviaux et volcaniques et l’aquifère carbonaté. Les âges au 14C de l’aquifère carbonate suggèrent que les vitesses des eaux souterraines dans une grande partie du Yucca Flat sont environ de 2m/an, ce qui est compatible avec le modèle conceptuel de longue date, qui stipule que les secteurs de faible perméabilité isolent du point de vue hydrogéologique l’aquifère carbonaté du Yucca Flat du système d’écoulement régional périphérique au sein des carbonates.

Resumen

Se evaluaron las edades 14C del agua subterránea corregidas del acuífero carbonático en el antiguo Nevada Test Site (actualmente el Nevada National Security Site), EEUU, comparando las variaciones temporales de 36Cl/Cl del agua subterránea estimados con estas edades 14C con registros publicados de variaciones meteóricas de 36Cl/Cl preservadas en madrigueras de ratas (pilas de fragmentos de plantas, materia fecal y orina). La buena concordancia entre estos registros indica que las edades 14C del agua subterránea son razonables y que el 14C se está moviendo con el cloruro sin sorción a la matriz de roca carbonática o cubiertas de fracturas, a pesar de la evidencia opuesta de los experimentos de laboratorio. Las edades 14C del agua subterránea son consistentes con otra evidencia hidrológica que indican una infiltración significativa en la cuenca que cesó 8,000 a 10,000 años atrás, y que la recarga al acuífero carbonático es a partir de paleoaguas que drenan a través de unidades confinantes suprayacentes de tufa a lo largo de las fallas principales. Esta interpretación está apoyada por las diferencias de edad relativa, así como por las diferencias de carga hidráulica entre los acuíferos aluvial y volcánico y el acuífero carbonático. Las edades 14C del acuífero carbonático sugieren que las velocidades del agua a través de la mayor parte del Yucca Flat son de alrededor de 2 m/yr, consistentes con el modelo conceptual largamente sostenido donde las crestas bloqueantes de de baja permeabilidad aislan hidrológicamente en el acuífero carbonático en el Yucca Flat del flujo del sistema regional carbonático periférico.

摘要

通过对采用14C年龄估测的地下水中 36Cl/Cl时间变化与保留在堆肥(植物碎屑、粪便物和尿)中的大气36Cl/Cl变化研究成果对比,评估了美国前内华达州试验场Yucca Flat地区碳酸盐含水层修正的地下水14C年龄。这些记录良好一致性表明,地下水14C年龄是合理的,尽管与实验室试验获取的证据相反,但14C与氯化物运移时并没有吸附到碳酸盐岩体或断裂表层。地下水14C年龄与其它水文证据一致,这些证据包括重要的盆地入渗停止于8000到10000年前,沿主要断裂通过上覆的凝灰岩承压单元排出的古水对碳酸盐含水层的补给。这种解释得到冲积、火山岩含水层与碳酸岩含水层之间的相对年龄差异及水头差异的支持。碳酸盐含水层14C年龄显示,Yucca Flat地区大部分区域地下水的速度每年大约为2 米,这与低透水性岩石的封堵山脊水文上分隔Yucca Flat地区碳酸盐含水层与边远的区域碳酸盐含水层长期公认的概念模型一致。

Resumo

As idades corrigidas de 14C da água subterrânea do aquífero carbonatado em Yucca Flat, no antigo local de testes de Nevada (agora Sítio Nacional de Segurança do Nevada – Nevada National Security Site), EUA, foram avaliadas por comparação das variações temporais de 36Cl/Cl estimadas nas águas subterrâneas com aquelas idades 14C com registos publicados das variações meteóricas de 36Cl/Cl preservadas em detritos acumulados por ratos (pilhas de fragmentos de plantas, matéria fecal e urina). Uma boa correlação entre estes registos indica que as idades 14C da água subterrânea são razoáveis e que o 14C se move com o cloreto sem absorver o carbonato da matriz rochosa ou da cobertura das paredes das fraturas, apesar da evidência em contrário das experiências laboratoriais. As idades 14C das águas subterrâneas são consistentes com outras evidências hidrológicas que indicam que as significativas infiltrações na bacia cessaram 8,000 a 10,000 anos atrás, e que a recarga para o aquífero carbonatado provém de paleoágua que drena através dos tufos das unidades confinantes superiores ao longo de falhas principais. Esta interpretação é suportada pelas diferentes idades relativas, bem como pelas diferenças de potencial hidráulico entre os aquíferos aluviais e vulcânicos e o aquífero carbonatado. As idades 14C do aquífero carbonatado sugerem que as velocidades da água subterrânea através da maior parte do Yucca Flat são de cerca de 2 m/ano, consistentes com o modelo concetual aceite há já muito tempo, que considera que cristas rochosas de baixa permeabilidade bloqueiam e isolam hidrogeologicamente o aquífero carbonatado em Yucca Flat do sistema de fluxo regional carbonatado em redor desta área.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bechtel Nevada (2006) A hydrostratigraphic model and alternatives for the groundwater flow and contaminant transport model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye counties, Nevada. DOE/NV/11718-1119. Report to the USDE, National Nuclear Security Admin., Las Vegas, NV

  • Benson L, Klieforth H (1989) Stable isotopes in precipitation and ground water in the Yucca Mountain region, southern Nevada: Paleoclimatic implications. American Geophysical Monograph 55, AGU, Washington, DC, pp 41–59

  • Bowen SM, Finnegan DL, Thompson JL, Miller CM, Baca PL, Olivas LF, Geoffrion CG, Smith DK, Goishi W, Esser BK, Meadows JW, Namboodin N, Wild JF (2001) Nevada Test Site radionuclide inventory, 1951–1992. LA-13959-MS, Los Alamos National Laboratory, Los Alamos, NM

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Coleman ML, Sheperd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Article  Google Scholar 

  • Davis SN, Moysey S, Cecil LD, Zreda M (2003) Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol J 11:217–227

    Article  Google Scholar 

  • Davisson ML, Velsko CA (1994) Rapid extraction of dissolved inorganic carbon from small volumes of natural waters for 14C determination by accelerator mass spectrometry, Rep. UCRL-JC-119176, Lawrence Livermore Natl. Lab, Livermore, CA, 23 pp

  • Davisson ML, Smith DK, Kenneally J, Rose TP (1999) Isotope hydrology of southern Nevada groundwater: stable isotopes and radiocarbon. Water Resour Res 35(1):279–294

    Article  Google Scholar 

  • Dickerson R, Rose T, Eaton G (2004) Letter report: underground test area project mineralogical and isotopic analysis of fracture-coating and alteration minerals in the Yucca Flat Tuff Confining Unit, Nevada Test Site. Stoller-Navarro Joint Venture, Las Vegas, NV

    Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Fabryka-Martin J, Wightman SJ, Murphy WJ, Wickham MP, Caffee MW, Nimz GJ, Southon JR, Sharma P (1993) Distribution of chlorine-36 in the unsaturated zone at Yucca Mountain: an indicator of fast transport paths. Paper presented at FOCUS’93 Site Characterization and Model Validation, Las Vegas, NV, September 1993

  • Fairbanks RG, Mortlock RA, Chiu TC, Cao L, Kaplan A, Guilderson TP, Fairbanks TW, Bloom AL, Grootes PM, Nadeau MJ (2005) Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24:1781–1796, Radiocarbon age to calendar age conversion program available at: http://radiocarbon.ldeo.columbia.edu/research/radcarbcal.htm. Accessed March 2014

    Article  Google Scholar 

  • Fenelon JM, Sweetkind DS, Elliot PE, Laczniak RJ (2012) Conceptualization of the predevelopment groundwater flow system and transient water-level responses in Yucca Flat, Nevada National Security Site, Nevada. US Geol Surv Sci Invest Rep 2012-5196, 62 pp

  • Forester RM, Bradbury JP, Carter C, Elvidge-Tuma AB, Hemphill ML, Lundstrom SC, Mahan SA, Marshall BD, Neymark LA, Paces JB, Sharpe SE, Whelan JF, Wigand PE (1999) The climatic and hydrologic history of southern Nevada during the late Quaternary. US Geol Surv Open File Rep 98-635

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13:263–287

    Article  Google Scholar 

  • Halford KJ, Laczniak RJ, Galloway DL (2005) Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada. US Geol Surv Sci Invest Rep 2005-5211, 55 pp

  • Hershey RL, Howcroft W, Reimus PW (2003) Laboratory experiments to evaluate diffusion of 14C into Nevada Test Site carbonate aquifer matrix. Publ. No. 45180, Desert Research, Reno, NV

  • Kwicklis EM, Wolfsberg AV, Stauffer PH, Walvoord MA, Sully MJ (2006) Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers. Vadose Zone J 5:934–950

    Article  Google Scholar 

  • Laczniak RJ, Cole JC, Sawyer DA, Trudeau DA (1996) Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada. US Geol Surv Water Resour Invest Rep 96-4109, 59 pp

  • Maloszewski P, Zuber A (1991) Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resour Res 27(8):1937–1945

    Article  Google Scholar 

  • Meijer A (2002) Conceptual model of the controls on natural water chemistry at Yucca Mountain, Nevada. Applied Geochemistry 17:793–805

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climate interpretation of deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Article  Google Scholar 

  • Moran JE, Rose TP (2003) A chlorine-36 study of regional groundwater flow and vertical transport in southern Nevada. Environ Geol 43:592–605

    Google Scholar 

  • Moysey S, Davis SN, Zreda M, Cecil LD (2003) The distribution of meteoric 36Cl/Cl in the United States: a comparison of models. Hydrogeol J 11:615–627

    Article  Google Scholar 

  • Mozeto AA, Fritz P, Reardon EJ (1984) Experimental observations on carbon isotope exchange in carbonate-water systems. Geochim Cosmochim Acta 48:495–504

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2008) Air Resources Laboratory, Special Operations and Research Division (ARL SORD). http://www.sord.nv.doe.gov/home_climate_rain.htm. Accessed September 2008

  • Parkhurst DL and Appelo CAJ (1999) User’s guide to PHREEQC: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, version 2. US Geol Surv Water Resour Invest Rep 99-4259

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. US Geol Surv Water Resour Invest Rep 94-4169

  • Plummer MA, Phillips FM, Farbryka-Martin J, Turin HJ, Wigand PE, Sharma P (1997) Chlorine-36 in fossil rat urine: an archive of cosmogenic nuclide deposition during the past 40,000 years. Science 277(5325):538–541

    Article  Google Scholar 

  • Quade J, Cerling TE (1990) Stable isotopic evidence for a pedogenic origin of carbonates in trench 14 near Yucca Mountain, Nevada. Science 250:1549–1552

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geol Soc Am Bull 101:464–475

    Article  Google Scholar 

  • Reimer PJ et al (2004) INTCAL04 terrestrial radiocarbon age calibration, 0-26 cal kyr bp. Radiocarbon 46(3):1029–1058

    Google Scholar 

  • Reimus PW, Hershey RL, Decker DL, Ware SD, Papelis C, Earman S, Abdel-Fattah A, Haga M, Counce D, Chipera S, Sedlacek C (2005) Tracer transport properties in the lower carbonate aquifer of Yucca Flat. Los Alamos National Laboratory Report, LANL, Los Alamos, NM

  • Reimus PW, Hershey R L, Decker D L, Garcia E, Earman S, Ryu J, Roback RC, Pohll G (2008) Laboratory experiments of 14C uptake and release on calcite and dolomite to support groundwater radionuclide transport modeling for the Nevada Test Site Underground Test Area Program. Los Alamos National Laboratory Report LA-UR-08-0427, LANL, Los Alamos, NM

  • Sanford WE (1997) Correcting for diffusion in carbon-14 dating of ground water. Groundwater 35(2):357–361

    Article  Google Scholar 

  • Sheppard SC, Ticknor KV, Evenden WG (1998) Sorption of inorganic 14C onto calcite, montmorillonite and soil. Appl Geochem 13:43–47

    Article  Google Scholar 

  • Spaulding WG (1990) Vegetational and climatic development of the Mojave Desert: the Last glacial maximum to the present. In: Betancourt JL et al (eds) Packrat middens: the last 40,000 years of biotic change. Univ. of Ariz. Press, Tucson, AZ, pp 166–199

    Google Scholar 

  • Stoller-Navarro Joint Venture (2006a) Geochemical and isotopic evaluation of groundwater movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. S-N/99205-070, Stoller-Navarro, Las Vegas, NV

  • Stoller-Navarro Joint Venture (2006b) Phase I Hydrologic data for the groundwater flow and transport model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada. S-N/99205-077, Stoller-Navarro, Las Vegas, NV

  • Stoller-Navaroo Joint Venture (2006c) Phase II groundwater flow model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada. S-N/99205-074, Stoller-Navarro, Las Vegas, NV

  • Stoller-Navarro Joint Venture (2007) Phase I contaminant transport parameters for the groundwater flow and transport model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada. S-N/99205-096, Stoller-Navarro, Las Vegas, NV

  • Sudicky EA, Frind E (1982) Contaminant transport in fractured porous media: analytic solutions for a system of parallel fractures. Water Resour Res 18(6):1634–1642

    Article  Google Scholar 

  • Tyler SW, Chapman JB, Conrad SH, Hammermeister DP, Blout DO, Miller JJ, Sully MJ, Ginanni JM (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour Res 32:1481–1499

    Article  Google Scholar 

  • US Department of Energy, Nevada Operations Office (2000) United States Nuclear Tests, July 1945 through September 1992. DOE/NV--209, Rev. 15. USDE, Nevada, Las Vegas, NV

  • Van der Plicht J et al (2004) NOTCAL04: comparison/calibration 14C records 20-50 cal kyr bp. Radiocarbon 46(3):1225–1238

    Google Scholar 

  • Walvoord MA, Plummer MA, Phillips FM, Wolfsberg AV (2002a) Deep arid system hydrodynamics 1: equilibrium states and response times in thick desert vadose zones. Water Resour Res 38(12):1308

    Google Scholar 

  • Walvoord MA, Phillips FM, Tyler SW, Hartsough PC (2002b) Deep arid system hydrodynamics 2: application to paleohydrologic reconstruction using vadose-zone profiles from the northern Mojave Desert. Water Resour Res 38(12):1291

    Google Scholar 

  • Walvoord MA, Stonestrom DA, Andraski BJ, Striegl RG (2004) Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert. Vadose Zone J 3(2):502–512. doi:10.2136/vzj2004.0502

    Article  Google Scholar 

  • Ware SD, Abdel-Fattah A, Ding M, Reimus PW, Sedlacek C, Haga MJ, Garcia E, Chipera S (2005) Radionuclide sorption and transport in fractured rocks of Yucca Flat, Nevada Test Site. Los Alamos Laboratory Report LA-UR-05-9279, Los Alamos, NM

  • White AF, Chuma NJ (1987) Carbon and isotopic mass balance models of Oasis Valley-Fortymile Canyon groundwater basin, southern Nevada. Water Resour Res 23(4):571–582

    Article  Google Scholar 

  • Winograd IJ, Thordarson W (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site. US Geol Surv Prof Pap 712-C

  • Winograd IJ, Landwehr JM, Coplen TB, Sharp WD, Riggs AC, Ludwig KR, Kolesar PT (2006) Devils Hole, Nevada, δ18O record extended to the mid-Holocene. Quat Res 66(2):202–212

    Article  Google Scholar 

  • Zavarin M, Johnson MR, Roberts SK, Pletcher R, Rose TP, Kersting AB, Eaton G, Hu Q, Ramon R, Walensky J, Zhao P (2005) Radionuclide transport in tuff and carbonate fractures from Yucca Flat, Nevada Test Site, Lawrence Livermore National Laboratory, Livermore, CA

  • Zavarin M, Roberts SK, Reimus PW, Johnson MR (2006) Summary of radionuclide reactive transport experiments in fractured tuff and carbonate rocks from Yucca Flat, Nevada Test Site. Lawrence Livermore National Laboratory, Livermore, CA

  • Zyvoloski GA, Robinson BA, Dash ZV, Trease LL (1997) Summary of models and methods for the FEHM application: a finite element heat and mass-transfer code. LA-13307-MS, Los Alamos National Laboratory, Los Alamos, NM

  • Zyvoloski GA, Robinson BA, Viswanathan HS (2008) Generalized double porosity: a numerical method for representing spatially variable sub-grid scale processes. Adv Water Resour 31(3):535–544

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bill Wilborn, Underground Test Area (UGTA) Project Manager, and the US Department of Energy Nevada Field Office for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Kwicklis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 256 kb)

ESM 2

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwicklis, E., Farnham, I. Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens. Hydrogeol J 22, 1359–1381 (2014). https://doi.org/10.1007/s10040-014-1131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1131-3

Keywords

Navigation