Advertisement

Hydrogeology Journal

, Volume 22, Issue 6, pp 1469–1485 | Cite as

The DRASTIC-Sg model: an extension to the DRASTIC approach for mapping groundwater vulnerability in aquifers subject to differential land subsidence, with application to Mexico City

  • Antonio Hernández-Espriú
  • J. Antonio Reyna-Gutiérrez
  • Emilio Sánchez-León
  • Enrique Cabral-Cano
  • Jaime Carrera-Hernández
  • Pedro Martínez-Santos
  • Sergio Macías-Medrano
  • Giacomo Falorni
  • Davide Colombo
Report

Abstract

Mexico City relies on groundwater for most of its domestic supply. Over the years, intensive pumping has led to significant drawdowns and, subsequently, to severe land subsidence. Tensile cracks have also developed or reactivated as a result. All such processes cause damage to urban infrastructure, increasing the risk of spills and favoring contaminant propagation into the aquifer. The effects of ground deformation are frequently ignored in groundwater vulnerability studies, but can be relevant in subsiding cities. This report presents an extension to the DRASTIC methodology, named DRASTIC-Sg, which focuses on evaluating groundwater vulnerability in urban aquifers affected by differential subsidence. A subsidence parameter is developed to represent the ground deformation gradient (Sg), and then used to depict areas where damage risk to urban infrastructure is higher due to fracture propagation. Space-geodetic SqueeSAR data and global positioning system (GPS) validation were used to evaluate subsidence rates and gradients, integrating hydrogeological and geomechanical variables into a GIS environment. Results show that classic DRASTIC approaches may underestimate groundwater vulnerability in settings such as the one at hand. Hence, it is concluded that the Sg parameter is a welcome contribution to develop reliable vulnerability assessments in subsiding basins.

Keywords

DRASTIC-Sg Groundwater vulnerability Subsidence Synthetic aperture radar (SAR) Mexico 

Le modèle DRASTIC-Sg: un développement de l’approche DRASTIC pour la cartographie de la vulnérabilité des eaux souterraines pour des aquifères sujets à un affaissement différentiel des terrains, avec une application à la ville de Mexico

Résumé

La ville de Mexico est dépendante de l’eau souterraine pour l’essentiel de son usage domestique. Au fil des années, les pompages intensifs ont conduit à des abaissements importants du niveau piézométrique et par conséquence à d’important affaissement de terrain. Des fissures de tension se sont développées ou ont été réactivées. Tous ces processus causent des dommages sur les infrastructures urbaines augmentant le risque de fuites favorisant la propagation de contaminants dans l’aquifère. Les effets des déformations du sol sont souvent ignorés dans les études de vulnérabilité des eaux souterraines, mais peuvent être pertinents pour les villes soumises à des affaissements de terrain. Cet article présente un développement de la méthodologie DRASTIC, nommée DRASTIC-Sg, ciblant l’évaluation de la vulnérabilité des eaux souterraines pour des aquifères en milieu urbain impactés par un affaissement différentiel des terrains. Un paramètre affaissement est développé pour représenter le gradient de déformation du sol, et ensuite utilisé pour décrire les zones où les risques de dommage des infrastructures urbaines sont plus élevés dus à la propagation des fractures. Les données spatiales et de géodésie (SqueeSAR) et les données de validation du système global de positionnement (GPS) ont été utilisées pour évaluer les vitesses d’affaissement des terrains et les gradients, intégrant les variables hydrogéologiques et géomécaniques dans un système d’information géographique. Les résultats montrent que les approches classiques DRASTIC sous-estiment la vulnérabilité des eaux souterraines dans des environnements tels que celui de la ville de Mexico. Par conséquence, on conclut que l’ajout du paramètre Sg contribue à élaborer des évaluations fiables de la vulnérabilité dans des bassins subsidents.

El modelo DRASTIC-Sg: una extensión a la aproximación de DRASTIC para mapear la vulnerabilidad del agua subterránea en acuíferos sujetos a subsidencia diferencial del terreno, con aplicación a la ciudad de México

Resumen

La ciudad de México depende del agua subterránea para la mayoría de sus abastecimientos domésticos. A través de los años, el bombeo intensivo ha llevado a depresiones significativas y, subsecuentemente, a una severa subsidencia del terreno. Como resultado también se han desarrollado o reactivado fracturas de tensión. Tales fenómenos han causado daños a la infraestructura urbana, incrementando el riesgo de vertidos y favoreciendo la propagación de contaminantes en el acuífero. Los efectos de la deformación del terreno son frecuentemente ignorados en los estudios de vulnerabilidad del agua subterránea, pero pueden ser relevantes en las ciudades subsidentes. Este trabajo presenta una extensión de la metodología DRASTIC, denominada DRASTIC-Sg, que se enfoca para evaluar la vulnerabilidad del agua subterránea en acuíferos afectados por subsidencia diferencial. Se desarrolla un parámetro de subsidencia para representar el gradiente de deformación del terreno (Sg), y luego se usa para delinear áreas donde el riesgo al daño para la infraestructura urbana es mayor debido a la propagación de las fracturas. Se usaron datos de espacio geodético SqueeSAR y la validación por el sistema de posicionamiento global (GPS) para evaluar las tasas y gradientes de subsidencia, integrando variables hidrogeológicas y geomecánicas en un ambiente GIS. Los resultados muestran que el enfoque DRASTIC clásico puede subestimar la vulnerabilidad del agua subterránea en configuraciones como la que nos ocupa. Por lo tanto, se concluye que el parámetro Sg es una contribución bienvenida para desarrollar evaluaciones confiables de vulnerabilidad en cuencas subsidentes.

DRASTIC-Sg模型:用DRASTIC方法对易受有差别的地面沉降的含水层 地下水添图的延伸,墨西哥城应用实例

摘要

墨西哥城大部分家庭用水依赖地下水。多年以来,强烈开采地下水 导致地下水水位大幅下降低,并由此造成严重的地面沉降。还使拉伸缝进 一步发育或使原来的拉伸缝再度激活。所有这些过程对城市基础设施造成 损坏,增加泄漏物和污染物进入含水层的风险。地面变形的影响在地下水 脆弱性研究中经常受到忽略,但在沉降的城市中有重要意义。本文介绍了 DRASTIC 方法的延伸,即DRASTIC-Sg。这个方法聚焦于评价受不同沉 降影响的城市含水层中地下水的脆弱性。找到了代表地面变形梯度(Sg)的 沉降参数,用来描述由于断裂蔓延造成对城市基础设施损害风险较高的地 区。太空大地测量SqueeSAR 资料和全球定验证用来评价沉降速度和梯 度,把水文地质变量和岩土力学变量整合在地理信息系统环境中。结果显 示,传统的DRASTIC 方法可能低估所研究的环境中地下水的脆弱性。因 此,结论就是,在进行沉降盆地可靠的脆弱性评价中,Sg 参数是一个积 极贡献。

O modelo DRASTIC-Sg: uma extensão à abordagem DRASTIC para mapeamento da vulnerabilidade da água subterrânea em aquíferos sujeitos a subsidência diferencial de terrenos, com aplicação à Cidade do México

Resumo

A Cidade do México depende de águas subterrâneas para a maior parte do seu abastecimento doméstico. Ao longo dos anos, bombeamentos intensivos levaram a significativos decréscimos do nível freático e, subsequentemente, a severa subsidência de terrenos. Como resultado, foram desenvolvidas ou reativadas fendas de tração. Todos estes processos causam danos nas infraestruturas urbanas, aumentando o risco de derramamentos e favorecendo a propagação da contaminação no aquífero. Os efeitos da deformação dos terrenos são frequentemente ignorados nos estudos de vulnerabilidade das águas subterrâneas, mas podem ser significativos em cidades sob subsidência. Este artigo apresenta uma extensão à metodologia DRASTIC, denominada DRASTIC-Sg, que se foca na avaliação da vulnerabilidade da água subterrânea em aquíferos urbanos afetados por subsidência diferencial. É desenvolvido um parâmetro de subsidência para representar o gradiente de deformação do solo (Sg), sendo depois usado para descrever áreas onde o risco de danos às infraestruturas urbanas é maior devido à propagação de fraturas. Foi usada validação com dados espaço-geodésicos SqueeSAR e sistemas de posicionamento global (GPS) para avaliar as taxas de subsidência e os gradientes, integrando variáveis hidrogeológicas e geomecânicas num ambiente SIG. Os resultados mostram que a abordagem DRASTIC clássica pode subestimar a vulnerabilidade da água subterrânea em ambientes como este. Conclui-se portanto que o parâmetro Sg é uma contribuição bem-vinda para o desenvolvimento de avaliações de vulnerabilidade em bacias em subsidência.

Notes

Acknowledgements

This research was funded by the CONACyT and the former Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF), currently the Secretaría de Ciencia, Tecnología e Innovación del Distrito Federal (to A. Hernández-Espriú), Project number CONACyT 121128. E. Cabral-Cano has been supported by grants from NASA-ROSES NNH10ZDA001N-ESI, UNAM PAPIIT IN121515, IN114907, IN117909, IN108611‐2, IN104213‐2 and CONACyT CB‐10151. The authors are grateful to Fernando Olalde and Jaime Ravelo (Secretaría del Medio Ambiente del Distrito Federal; Mexico City Government) for providing logistic support during the field campaigns. We also thank H. Macías-González, A. Ramos-Leal J. Goya, A. Arias, M. Vidal, A. Meneses, J.L. Arcos, E. López and D. Solano for their contributions. Finally, we are grateful to Prof. Stephen Foster for his enthusiastic ideas regarding this project, during the 39th IAH Congress, at Niagara Falls, Canada.

References

  1. Alberro J, Hernandez R (1990) Genesis de las grietas de tension en el Valle de Mexico [Genesis of tensile cracks in the Valley of Mexico]. Mexican Society of Soil Mechanics (SMMS), Mexico City, 95 ppGoogle Scholar
  2. Alberto-Jaime P, Méndez-Sánchez E (2010) Evolution of Mexico City clay properties affected by land subsidence. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development. IAHS Publ. 339, IAHS, Wallingford, UKGoogle Scholar
  3. Aller L, Lehr JH, Petty R (1987) DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings. NWWA/US EPA Ser., EPA600/287035, US EPA, Washington, DC, 455 ppGoogle Scholar
  4. Arce JL, Layer PW, Morales-Casique E, Benowitz J, Rangel E, Escolero O (2013) New constraints on the subsurface geology of the Mexico City Basin: the San Lorenzo Tezonco deep well, on the basis of 40Ar/39Ar geochronology and whole-rock chemistry. J Volcanol Geotherm Res 266:34–49. doi: 10.1016/j.jvolgeores.2013.09.004 CrossRefGoogle Scholar
  5. Auvinet G, Méndez E, Juárez M (2013) Fracturation des sols induite par la subsidence de la ville de Mexico [Soil fracturing induced by land subsidence in Mexico City]. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, September 2013Google Scholar
  6. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–165CrossRefGoogle Scholar
  7. Bouwer H (1978) Land subsidence and cracking due to ground-water depletion. Ground Water 15(5):358–364CrossRefGoogle Scholar
  8. Burrough PA, McDonnell RA (1998) Principles of Geographical Information Systems, Oxford University Press, OxfordGoogle Scholar
  9. Butscher C, Huggenberger P (2009) Enhanced vulnerability assessment in karst areas by combining mapping with modeling approaches. Sci Total Environ 407:1153–1163CrossRefGoogle Scholar
  10. Cabral-Cano E, Dixon TH, Miralles-Wilhelm F, Díaz-Molina O, Sánchez-Zamora O, Carande RE (2008) Space geodetic imaging of rapid ground subsidence in Mexico City. Geol Soc Am Bull 120:1556–1566CrossRefGoogle Scholar
  11. Calderhead AI, Therrien R, Rivera A, Martel R, Garfias J (2011) Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv Water Resour. doi: 10.1016/j.advwatres.2010.09.017 Google Scholar
  12. Carreón-freyre DC, Hidalgo-moreno CM, Hernández-marín M (2006) Mecanismos de fracturamiento de depósitos arcillosos en zonas urbanas. Caso de deformación diferencial en Chalco, Estado de México [Fracture mechanisms in lacustrine deposits within urban areas: differential deformation case-study at Chalco, Mexico state]. Bol Soc Geol Mex (Spec. Issue Urban Geology) 2:237–250Google Scholar
  13. Carrera-Hernandez JJ, Gaskin S (2007) Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J Hydrol. doi: 10.1016/j.jhydrol.2006.12.021 Google Scholar
  14. Carrera-Hernández JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol. doi: 10.1016/j.jhydrol.2008.02.012 Google Scholar
  15. Carrillo N (1948) Influence of artesian wells on the sinking of México City. In: Proc. of the 2nd Int. Conf. on Soils Mechanics, Rotterdam, The Netherlands, June 1948, 7:7–14Google Scholar
  16. Casagrande A (1936) The determination of the preconsolidation load and its practical significance. Proc First Int Conf Soil Mech Found Eng 3:60–64Google Scholar
  17. Chen S-K, Jang C-S, Peng Y-H (2013) Developing a probability-based model of aquifer vulnerability in an agricultural region. J Hydrol 486:494–504CrossRefGoogle Scholar
  18. Civita M, De Maio M (1997) SINTACS Un sistema parametrico per la valutazione e la cartografia per la valutazione della vulnerabilità degli acquiferi all’inquinamento, metodologia e automazione [A parametric system for the assessment and mapping of groundwater vulnerability to pollution, methodology and automatization]. Pitagora, Bologna, ItalyGoogle Scholar
  19. CHCVM -Comisión Hidrológica de la Cuenca del Valle de México (1953) Datos diarios del Valle de México correspondientes a 1953 [Daily data of the Valley of Mexico for 1953], Bol Mecán Suel 1, CHCVM, Mexico CityGoogle Scholar
  20. CNNexpansion (2007) Hallan cadaver en grieta de Iztapalapa [Dead body found inside a crack in Iztapalapa]. http://www.cnnexpansion.com/actualidad/2007/7/11/hallan-cadaver-en-grieta-de-iztapalapa. Accessed 22 November 2013
  21. Comisión Nacional del Agua (2009) Actualización de la disponibilidad media anual de agua subterránea: Acuífero (0901) Zona Zetropolitana de la Cd. de México [Update of the annual mean groundwater disponibility: Aquifer 0901, Mexico City]. Diario Oficial de la Federación. Available via http://www.conagua.gob.mx/disponibilidad.aspx?n1=3&n2=62&n3=94. Accessed 19 November 2013
  22. Dehghani M, Valadan Z, Mohammad J, Entezam I, Mansourian A, Saatchi S (2009) InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophys J Int 178(1):47–56CrossRefGoogle Scholar
  23. Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15:483–493CrossRefGoogle Scholar
  24. Ducci D, Sellerino M (2013) Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. Sci Total Environ. doi: 10.1016/j.scitotenv.2012.12.090 Google Scholar
  25. ESRI-Environmental Sciences Research Institute (2008) ArcGIS: ArcMap and extensions. Environmental Sciences Research Inst., Redlands, CAGoogle Scholar
  26. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470. doi: 10.1109/TGRS.2011.2124465 CrossRefGoogle Scholar
  27. Figueroa-Vega F (1984) Case history no. 9.8, Mexico. In: Poland JF (ed) Guidebook to studies of land subsidence due to ground-water withdrawal, UNESCO, ParisGoogle Scholar
  28. Foster SSD, Hirata RA, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities and environment agencies. World Bank, Washington, DCCrossRefGoogle Scholar
  29. Gaceta UNAM (2013) Necesarios, más estudios sobre el pozo profundo en el DF. Mexico City, Mexico. [Necessary, more studies concerning the deep borehole in Mexico City]. No. 4486, Gaceta UNAM, Mexico City. Available via http://www.dgcs.unam.mx/gacetaweb/2013/130131/gaceta.pdf. Accessed 11 February 2014
  30. Galloway DL, Burbey TJ (2011) Review: regional land subsidence accompanying groundwater extraction. Hydrogeol J 19:1459–1486CrossRefGoogle Scholar
  31. Galloway DL, Hoffmann J (2007) The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeol J. doi: 10.1007/s10040-006-0121-5 Google Scholar
  32. Gayol R (1925) Estudio de las perturbaciones que en el fondo de la Ciudad de México ha producido el drenaje de las aguas del subsuelo, por las obras del desagüe y rectificación de los errores a que ha dado lugar una incorrecta interpretación de los efectos producidos [A study of the disturbances that drainage of groundwater has caused in Mexico City, due to urban infrastructure development and correction of errors that have led to an incorrect interpretation of the produced effects]. Rev Mex Ing Arquitect 3:96–132Google Scholar
  33. Hernandez-Laloth N (2008) Visual two-zone model with vertical flow and leakage: a GUI for aquifer test interpretation using numerical methods. Available via http://www.ingenieria.unam.mx/hydrogeology. Accessed 11 February 2014
  34. Hernandez-Marín M, Carreón-Freyre DC, Cerca M (2005) Mechanical and physical properties of the montmorillonitic and allophanic clays in the near-surface sediments of Chalco Valley, Mexico: analysis of contributing factors to land subsidence.Shanghai Sci. and Tech., ShanghaiGoogle Scholar
  35. Herrera I, Martinez R, Hernandez G (1989) Contribución para la administración científica del agua subterranea de la Cuenca de México [Contribution for the scientific management of the groundwater in the Basin of Mexico]. Geofis Int 28:297–334Google Scholar
  36. Hiriart F, Marsal RJ (1969) The subsidence of Mexico City. In: Volumen Nabor Carrillo, Comisión Impulsora y Coordinadora de la Investigación Científica (ed), Secretaria de Hacienda y Crédito Público, Mexico CityGoogle Scholar
  37. Holzer TL, Galloway DL (2005) Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Geol Soc Am Rev Eng Geol 16:87–99Google Scholar
  38. Horn R, Way T, Rostek J (2001) Effect of repeated wheeling on stress/strain properties and ecological consequences in structured arable soils. Rev Cien Suelo Nutr Veg 1:34–40Google Scholar
  39. Huizar-Alvarez R, Carrillo-Rivera JJ, Hergts T, Serrano A, Cardona AC (2004) Chemical response to groundwater abstraction southeast of Mexico City. Hydrogeol J 12(4):436–450CrossRefGoogle Scholar
  40. Hung WC, Hwang C, Chang CP, Yen JY, Liu CH, Yang WH (2010) Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environ Earth Sci 59(7):1535–1548CrossRefGoogle Scholar
  41. INEGI-Instituto Nacional de Estadística y Geografía (1983) Carta edafológica escala 1:250 000 E14-2 [Soil map, Scale 1:250 000 E14-2]. INEGI, Oxaca, MexicoGoogle Scholar
  42. INEGI-Instituto Nacional de Estadística y Geografía (2010) Censo de población y vivienda 2010/Estadísitca [Population and housing census/statistics]. INEGI, Oxaca, Mexico. Available via http://www.censo2010.org.mx. Accessed February, 2014
  43. Kumar Prasad R, Singh VS, Krishnamacharyulu SKG, Banerjee P (2011) Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer. Environ Monit Assess 176(1–4):143–155CrossRefGoogle Scholar
  44. Lesser y Asociados (2003) Piezometría del Valle de Mexico, Año 2003 [Piezometric records of the Valley of Mexico, year 2003]. Sistema de Aguas de la Ciudad de Mexico, Tech. report, Lesser, Querétaro, MexicoGoogle Scholar
  45. Lima ML, Zelaya K, Massone H (2011) Groundwater vulnerability assessment combining the DRASTIC and dyna-Clue model in the Argentine pampas. Environ Manag 47:828–839Google Scholar
  46. López-Quiroz P, Doin MP, Tupin F, Briole P, Nicolas JM (2009) Time series analysis of Mexico City subsidence constrained by radar Interferometry. J Appl Geophys 69(1):1–15CrossRefGoogle Scholar
  47. Marsal RJ, Mazari-Hiriart M (1959) The subsoil of Mexico City. Facultad de Ingeniería, Universidad Nacional Autónoma de México, MexicoGoogle Scholar
  48. Marsal RJ, Mazari-Hiriart M (1990) Desarrollo de la mecánica de suelos en la Ciudad de México [Evolution of soil mechanics in Mexico City]. In: El subsuelo de la Cuenca del Valle de México y su relación con la ingeniería de cimentaciones a cinco años del sismo. Soc Mexicana Mecánica Suelos México 1:3–24Google Scholar
  49. Mazari M (1996) Hacia el Tercer Mileno [Towards the third millennium]. El Colegio Nacional, Mexico CityGoogle Scholar
  50. Mazari-Hiriart M, Mazari HM, Ramírez C, Alberro J (1992) Efectos de la extracción de agua en la zona lacustre del valle de México [Effects of water extraction in the lacustrine zone of the VAlley of Mexico]. Volumen Raúl J. Marsal, Sociedad Mexicana de Mecánica de Suelos, A.C. México, pp 37–48Google Scholar
  51. Mazari-Hiriart M, Cruz BG, Bojorquez TLA, Juarez ML, Alcantar LG, Marin LE, Soto GE (2006) Groundwater vulnerability assessment for organic compounds: fuzzy multicriteria approach for Mexico City. Environ Manag 37(3):410–421Google Scholar
  52. Molson JW, Frind EO (2012) On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection. J Contam Hydrol. doi: 10.1016/j.jconhyd.2011.06.001 Google Scholar
  53. Mooser R, Montiel A, Zúñiga A (1996) Nuevo mapa geológico de las cuencas de México, Toluca y Puebla. Estratigrafía tectónica regional y aspectos geotérmicos [New gelogical map for the Basins of Mexico, Toluca and Puebla]. Comisión Federal de Electricidad, MexicoGoogle Scholar
  54. Oliva-Soto LG (2007) Interval and fuzzy regressions to enhance DRASTIC aquifer vulnerability assessments, MSc Thesis, Texas A&M University, USAGoogle Scholar
  55. Or D, Ghezzehei TA (2002) Modeling post-tillage structural dynamics in aggregated soils: a review. Soil Tillage Res 64:41–59CrossRefGoogle Scholar
  56. Ortega-Guerrero A, Cherry JA, Rudolph DL (1993) Large-scale aquitard consolidation near Mexico City. Ground Water. doi: 10.1111/j.1745-6584.1993.tb00841 Google Scholar
  57. Osmanoglu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs Geoinfor 13(1):1–12CrossRefGoogle Scholar
  58. Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J. doi: 10.1007/s10040-005-0008-x Google Scholar
  59. Pérez-Cruz GA (1988) Estudio sismológico de reflexión del subsuelo de la Ciudad de México [Reflective seismologic study of the subsoil of Mexico City], MSc Thesis, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  60. R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available via http://www.R-project.org. Accessed 11 February 2014
  61. Ramos-Leal JA, Noyola Medrano C, Tapia Silva FO (2010) Aquifer vulnerability and groundwater quality in mega cities: case of the Basin of Mexico. Environ Earth Sci. doi: 10.1007/s12665-009-0434-5 Google Scholar
  62. Rathod KS, Rusthon KR (1984) Numerical method of pumping test analysis using microcomputers. Groundwater 22:14–27CrossRefGoogle Scholar
  63. Rathod KS, Rusthon KR (1992) Interpretation of pumping from two-zone layered aquifers using a numerical model. Groundwater 29(4):499–509CrossRefGoogle Scholar
  64. Rushton KR, Redshaw SC (1979) Seepage and ground-water flow. Wiley, Chichester, UKGoogle Scholar
  65. SACM-Sistema de Aguas de la Ciudad de México (2006) Modelo hidrodinámico del acuífero de la Zona Metropolitana de la Ciudad de México [Hydrodynamic model of the Mexico City aquifer]. Instituto Mexicano de Tecnología del Agua (IMTA). Technical report, Contract no. 06-CD-03-1O-0272-1-06, SACM, Mexico CityGoogle Scholar
  66. Santoyo E, Ovando E, Mooser F, León, E (2005) Síntesis Geotécnica de la Cuenca del Valle de México [Geotechnical synthesis of the Basin of Mexico]. TGC Geotecnia, Federal District, MexicoGoogle Scholar
  67. Sneed M, Ikehara ME, Stork SV, Amelung F, Galloway DL (2003) Detection and measurement of land subsidence using interferometric synthetic aperture radar and global positioning system, San Bernardino County, Mojave Desert, California. U.S. Geological Survey Water Resour Invest Rep 03-4015Google Scholar
  68. Sorichetta A, Masetti M, Ballabio C, Sterlacchini S, Beretta JP (2011) Reliability of groundwater vulnerability maps obtained through statistical methods. J Environ Manag. doi: 10.1016/j.jenvman.2010.12.009 Google Scholar
  69. Tapia-Varela G, López-Blanco J (2002) Mapeo geomorfológico analítico de la porción central de la Cuenca de México: Unidades Morfogenéticas a escala 1:100 000 [Analytic geomorphologic mapping of the central portion of the Basin of Mexico: morphogenetic units scale 1:100 000]. Rev Mex Cienc Geol 19(1):50–65Google Scholar
  70. Trautner A, van den Akker JJH, Fleige H, Arvidsson J, Horn R (2003) A subsoil compaction database: its development, structure and content. Soil Tillage Res. doi: 10.1016/S0167-1987(03)00095-3 Google Scholar
  71. Vargas C, Ortega-Guerrero MA (2004) Fracture hydraulic conductivity in the Mexico City clayey aquitard: field piezometer rising-head tests. Hydrogeol J 12:336–344CrossRefGoogle Scholar
  72. Vázquez-Sánchez E (1995) Modelo conceptual hidrológico y características hidráulicas del acuífero en explotación en la parte meridional de la Cuenca de México [Conceptual hydrologic model and hydraulic characteristics of the aquifer under exploitation in the meridional part of the Basin of Mexico]. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  73. Vázquez-Sánchez E, Jaimes-Palomera R (1989) Geología de la Cuenca de México [Geology of the Basin of Mexico]. Geofis Int 28(2):133–189Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Antonio Hernández-Espriú
    • 1
  • J. Antonio Reyna-Gutiérrez
    • 1
    • 2
  • Emilio Sánchez-León
    • 1
    • 3
  • Enrique Cabral-Cano
    • 4
  • Jaime Carrera-Hernández
    • 5
  • Pedro Martínez-Santos
    • 6
  • Sergio Macías-Medrano
    • 1
  • Giacomo Falorni
    • 7
  • Davide Colombo
    • 8
  1. 1.Hydrogeology Group, Earth Sciences Division, Faculty of EngineeringUniversidad Nacional Autónoma de México (UNAM)MéxicoMexico
  2. 2.Department of Environmental EngineeringDanmarks Tekniske UniversitetKongens LyngbyDenmark
  3. 3.Center for Applied GeoscienceEberhard Karls Universität TübingenTübingenGermany
  4. 4.Department of Geomagnetism and ExplorationInstitute of Geophysics, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  5. 5.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  6. 6.Department of Geodynamics, Faculty of Geological SciencesUniversidad Complutense de MadridMadridSpain
  7. 7.TRE Canada Inc.VancouverCanada
  8. 8.Tele-Rilevamento Europa T.R.E. s.r.l.MilanItaly

Personalised recommendations