Skip to main content

Advertisement

Log in

Evaluating shallow flow-system response to climate change through analysis of spring deposits in southwestern Wisconsin, USA

Evaluation de la réponse d’un système aquifère superficiel au changement climatique par l’analyse des dépôts d’une source dans le sud-ouest du Wisconsin, Etats-Unis

Evaluación de la respuesta de un sistema de flujo somero al cambio climático a través del análisis de depósitos de manantiales en el sudoeste de Wisconsin, EEUU

Avaliação da resposta do sistema de fluxo subsuperficial às alterações climáticas através da análise de depósitos de nascente no sudoeste de Wisconsin, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Tufa-depositing springs in the southern Driftless Area of Wisconsin, USA, are used to inform the response of shallow and local groundwater flow systems to changes in climate over the last 3,000 years. The springs emanate from a shallow, unconfined, sedimentary bedrock aquifer and at stratigraphic positions similar to a shallow, perched aquifer that was identified in the eastern Driftless Area. The perched aquifer was shown to be stable under current climate conditions and over decadal time scales. This study provides further evidence of the significance of the stratigraphic interval in controlling shallow groundwater flow patterns in the region and in the stability of shallow and local groundwater flow systems over thousands of years. The tufa carbonates in three cores collected from the mounds adjacent to the springs show variations in stable isotope (δ13C, δ18O) and elemental (Mg/Ca) values that agree with well-established paleoclimate records for the region, suggesting that the springs were active and depositing tufa in the past, during climate conditions that were similar to the present and during conditions that were drier than the present.

Résumé

Les dépôts de tuf de sources, dans le Sud de la région de Driftless dans le Wisconsin (Etats-Unis), ont été utilisés pour évaluer la réponse de systèmes aquifères superficiels et locaux au changement climatique au cours des derniers 3,000 ans. Les sources émergent d’un aquifère sédimentaire à nappe libre, peu profond, et à des niveaux stratigraphiques similaires à un aquifère perché, peu profond, dans le secteur Est de la région de Driftless. Il a été montré que l’aquifère perché était stable sous les conditions climatiques actuelles et au cours des dernières décennies. Cette étude apporte d’autres preuves de l’importance de l’intervalle stratigraphique dans le contrôle des modes d’écoulement des eaux souterraines peu profondes et dans la stabilité des systèmes aquifères superficiels et locaux, au cours des derniers millénaires. Les carbonates des tufs de trois échantillons collectés dans les monticules adjacents aux sources, montrent des variations des isotopes stables (δ13C, δ18O) et des valeurs pour les éléments Mg/Ca qui correspondent bien aux enregistrements paléo-climatiques pour la région, suggérant ainsi que les sources étaient actives et ont déposé des tufs dans le passé, lors de conditions climatiques identiques aux conditions actuelles, et lors de conditions plus sèches.

Resumen

Se usaron los depósitos de tufa en manantiales en el sur del Driftless Area de Wisconsin, EEUU, para informar la respuesta de los sistemas locales someros del flujo de agua subterránea a cambios en el clima en los últimos 3,000 años. Los manantiales emanan desde un acuífero somero no confinado de roca sedimentaria, y en una posición estratigráfica similar a un acuífero somero colgado, que fue identificado en el este del Driftless Area. El acuífero colgado mostró ser estable bajo las actuales condiciones climáticas y sobre escalas temporales de décadas. Este estudio proporciona una evidencia adicional de la significación del intervalo estratigráfico en controlar los patrones de flujo somero del agua subterránea en la región y la estabilidad de los sistemas de flujo locales someros de agua subterránea a través de miles de años. Los carbonatos de la tufa en tres testigos recolectados de promontorios adyacentes a los manantiales muestran variaciones en los isotopos estables (δ13C, δ18O) y en los valores básicos (Mg/Ca) que concuerdan con los bien establecidos registros paleoclimáticos de la región, sugiriendo que los manantiales estuvieron activos y depositando tufa en el pasado, durante condiciones climáticas que eran similares a las actuales y durante condiciones que eran más secas que las presentes.

Resumo

Os depósitos de tufa nas nascentes da Zona de Driftless, na parte sul de Wisconsin, EUA, são usados para analisar a resposta dos sistemas de fluxo local de águas subterrâneas às alterações climáticas nos últimos 3,000 anos. As nascentes emanam de um aquífero sedimentar não confinado e em posições estratigráficas semelhantes ao de um aquífero livre suspenso identificado a este da Área de Driftless. O aquífero suspenso mostrou ter um comportamento estável sob condições climáticas atuais e em escalas de tempo da ordem das décadas. Este estudo fornece mais uma prova da importância de se considerar o intervalo estratigráfico no controlo dos padrões de fluxo de água subterrânea subsuperficial na região e na estabilidade dos sistemas de fluxo subsuperficiais e locais de águas subterrâneas ao longo de milhares de anos. Os carbonatos de tufa analisados em três testemunhos amostrados nos locais adjacentes às nascentes apresentam variações em isótopos estáveis (δ13C, δ18O) e valores elementares (Mg/Ca) que estão de acordo com registos paleoclimáticos bem estabelecidos para a região, o que sugere que as nascentes estavam ativas e depositando tufa no passado, durante condições climáticas que foram semelhantes às atuais e durante condições mais secas que a atual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agnew AF (1963) Geology of the Platteville Quadrangle, WI. US Geol Surv Bull 1123E:245–277

    Google Scholar 

  • Agnew AF (1966) Geology of the Potosi Quadrangle, Grant County Wisconsin and Dubuque County, Iowa. US Geol Surv Bull 1123I:533–567

    Google Scholar 

  • Agnew AF, Heyl AV, Behre CH Jr., Lyons E J (1956) Stratigraphy of Middle Ordovician rocks in the zinc-lead district of Wisconsin, Illinois, and Iowa. US Geol Surv Prof Pap 274-K

  • Andrews JE (2006) Paleoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth Sci Rev 75(1–4):85–104

    Article  Google Scholar 

  • Andrews JE, Riding R, Dennis PF (1997) The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeogr Palaeoclimatol Palaeoecol 129:171–189

    Article  Google Scholar 

  • Asmerom Y, Polyak V, Burns S (2010) Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat Geosci 3:114–117

    Article  Google Scholar 

  • Baker RG, Bettis EA, Schwert DP, Horton DG, Chumbley CA, Gonzalez LA, Reagan MK (1996) Holocene paleoenvironments of northeast Iowa. Ecol Monogr 66(2):203–234

    Article  Google Scholar 

  • Bartlein PJ, Webb T, Fleri E (1984) Holocene climatic change in the northern Midwest: pollen-derived estimates. Quat Res 22:361–374

    Article  Google Scholar 

  • Bedford BL, Godwin KS (2003) Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23(3):608–629

    Article  Google Scholar 

  • Carter JTV, Gotkowitz MB, Anderson MP (2010) Field verification of stable perched groundwater in layered bedrock uplands. Ground Water. doi:10.1111/j.1745-6584.2010.00736.x

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Clark JS, Grimm EC, Lynch J, Mueller PG (2001) Effects of Holocene climate change on the C4 grassland/woodland boundary in the northern plains, USA. Ecology 82(3):620–636

    Google Scholar 

  • Clayton L, Attig JW (1997) Pleistocene geology of Dane County, Wisconsin. Wis Geol Nat Hist Bull 95

  • Cremaschi M, Zerboni A, Spoetl C, Felletti F (2010) The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya): an early Holocene palaeoclimate archive in the central Sahara. Palaeogeogr Palaeoclimatol Palaeoecol 287(1–4):81–94

    Article  Google Scholar 

  • De Geoffroy J, Wu SM, Heins RW (1967) Geochemical coverage by spring sampling method in the southwest Wisconsin zinc area. Econ Geol 62:679–697

    Article  Google Scholar 

  • De Geoffroy J, Wu SM, Heins RW (1970) Some observations on springs in southwest Wisconsin. Water Resour Res 6(4):1235–1238

    Article  Google Scholar 

  • Dean WE, Bradbury JP, Anderson RY, Barnosky CW (1984) The variability of Holocene climate change: evidence from varved lake sediments. Science 226:1191–1194

    Article  Google Scholar 

  • Denniston RF, Gonzalez LA, Asmerom Y, Baker RG, Reagan MK, Bettis EA (1999) Evidence for increased cool season moisture during the middle Holocene. Geology 27:815–818

    Article  Google Scholar 

  • Denniston RF, DuPree M, Dorale JA, Asmerom Y, Polyak VJ, Carpenter SJ (2007) Episodes of late Holocene aridity recorded by stalagmites from Devil’s Icebox Cave, central Missouri, USA. Quat Res 68(1):45–52

    Article  Google Scholar 

  • Dodds WK, Oakes RM (2008) Headwater influences on downstream water quality. Environ Manag 41(3):367–377

    Article  Google Scholar 

  • Doherty H (2010) Lithostratigraphic controls on groundwater flow and spring location in the Driftless Area of southwest Wisconsin. In: de Wet A (ed) Proc. of the 23rd Annual Keck Res. Symposium in Geology, Houston, TX, April 2010, pp 103–109

  • Dorale JA, Gonzalez LA, Reagan MK, Pickett DA, Murrell MT, Baker RG (1992) A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa. Science 258:1626–1630

    Article  Google Scholar 

  • Eggers SD, Reed DM (1997) Wetland plants and communities of Minnesota and Wisconsin. US Army Corps of Engineers, St. Paul, MN

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41(3–4):117–175

    Article  Google Scholar 

  • Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variation. Water Resour Res 3(2):623–634

    Article  Google Scholar 

  • Gaffield SJ, Potter KW, Wang L (2005) Predicting the summer temperature of small streams in southwestern Wisconsin. J Am Water Resour Assoc 41:25–36

    Article  Google Scholar 

  • Garnett ER, Andrews JE, Preece RC, Dennis PF (2004) Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. J Quat Sci 19(3):251–262

    Article  Google Scholar 

  • Heller SA (1988) Seasonal geochemistry of two tufa-depositing springs in southwestern Wisconsin. Geosci Wis 12:77–83

    Google Scholar 

  • Heyl AV, Agnew AF, Lyons EJ, Behre AE (1959) The geology of the Upper Mississippi Valley zinc-lead district. US Geol Surv Prof Pap 309

  • Hunt RJ, Saad DA, Chapel DM (2003) Numerical simulation of ground-water flow in La Crosse County, Wisconsin and into nearby pools of the Mississippi River. US Geol Surv Water Resour Invest Rep 03-4154

  • Ihlenfeld C, Norman MK, Gagan MK, Drysdale RN, Maas R, Webb J (2003) Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa. Geochim Cosmochim Acta 67(13):2341–2357

    Article  Google Scholar 

  • Janssen A, Swennen R, Podoor N, Keppens E (1999) Biological and diagenetic influence in recent and fossil tufa deposits from Belgium. Sediment Geol 126:75–95

    Article  Google Scholar 

  • Juckem PF, Hunt R, Anderson MP (2006) Scale effects of hydrostratigraphy and recharge zonation on base flow. Ground Water 44(3):362–370

    Article  Google Scholar 

  • Kano A, Hagiwara R, Kawai T, Hori M, Matsuoka J (2007) Climatic conditions and hydrological change recorded in a high-resolution stable-isotope profile of a recent laminated tufa on a subtropical island, southern Japan. J Sediment Res 77(1):59–67

    Article  Google Scholar 

  • Knox JC (2000) Sensitivity of modern and Holocene floods to climate change. Quat Sci Rev 19:439–457

    Article  Google Scholar 

  • Krohelski JT, Bradbury KR, Hunt RJ, Swanson SK (2000) Numerical simulation of groundwater flow in Dane County, Wisconsin. Wis Geol Nat Hist Surv Bull 98

  • Macholl JA (2007) Inventory of Wisconsin’s springs. Wis Geol Nat Hist Surv Open File Rep 2007-03

  • Mallick R, Frank N (2002) A new technique for precise uranium-series dating of travertine micro-samples. Geochim Cosmochim Acta 66(24):4261–4272

    Article  Google Scholar 

  • Manga M (2001) Using springs to study groundwater flow and active geologic processes. Ann Rev Earth Planet Sci 29:201–228

    Article  Google Scholar 

  • Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. J Am Water Resour Assoc 43(1):86–103

    Article  Google Scholar 

  • Mudrey MG Jr, Brown BA, Greenberg JK (2007) Bedrock geologic map of Wisconsin. Wis Geol Nat Hist State Map 18-DI, ver 1.0, 1 CD-ROM

  • Muldoon MA, Simo JA, Bradbury KR (2001) Correlation of high-permeability zones with stratigraphy in a fractured-dolomite aquifer, Door County, Wisconsin. Hydrogeol J 9(6):570–583

    Article  Google Scholar 

  • National Research Council (NRC) (2004) Groundwater fluxes across interfaces. The National Academies Press, Washington, DC

    Google Scholar 

  • Nelson ST, Karlsson HR, Paces JB, Tingey DG, Ward S, Peters MT (2001) Paleohydrologic record of spring deposits in and around Pleistocene pluvial Lake Tecopa, southeastern California. Geol Soc Am Bull 113(5):659–670

    Article  Google Scholar 

  • Pedley HM (1990) Classification and environmental models of cool freshwater tufas. Sediment Geol 68(1–2):143–154

    Article  Google Scholar 

  • Pedley M, Martin JA, Delgado SO, Garcia DC (2003) Sedimentology of quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology 50(1):23–44

    Article  Google Scholar 

  • Person M, Roy P, Wright H, Gutowski W Jr, Ito E, Winter T, Rosenberry D, Cohen D (2007) Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change. Geol Soc Am Bull 119(3–4):363–376

    Article  Google Scholar 

  • Placzek CJ, Quade J, Patchett PJ (2011) Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano. Quat Res 75(1):231–244

    Article  Google Scholar 

  • Rainey DK, Jones B (2007) Rapid cold water formation and recrystallization of relict bryophyte tufa at the Fall Creek cold springs, Alberta, Canada. Can J Earth Sci 44(7):889–909

    Article  Google Scholar 

  • Rulon JJ, Rodway R, Freeze RA (1985) The development of multiple seepage faces on layered slopes. Water Resour Res 21(11):1625–1636

    Article  Google Scholar 

  • Runkel A C, Tipping R G, Alexander E C Jr, Green J A, Mossler J H, Alexander S C (2003) Hydrogeology of the Paleozoic bedrock in southeastern Minnesota. Minn Geol Surv Invest Rep 61

  • Smith JR, Hawkins AL, Asmerom Y, Polyak V, Giegengack R (2007) New age constraints on the middle stone age occupations of Kharga Oasis, Western Desert, Egypt. J Hum Evol 52(6):690–701

    Article  Google Scholar 

  • Swanson SK, Bahr JM (2004) Analytical and numerical models to explain steady rates of spring flow. Ground Water 42(5):747–759

    Article  Google Scholar 

  • Swanson SK, Bahr JM, Bradbury KR, Anderson KM (2006) Evidence for preferential flow through sandstone aquifers in southern Wisconsin. Sediment Geol 184:331–342

    Article  Google Scholar 

  • Swanson SK, Bradbury KR, Hart DJ (2007) Assessing the ecological status and vulnerability of springs in Wisconsin. Wis Geol Nat Hist Survey Open File Rep 2007-04

  • Swanson SK, Bradbury KR, Hart DJ (2009) Assessing the vulnerability of spring systems to groundwater withdrawals in southern Wisconsin. Geosci Wis 20(1):1–13

    Google Scholar 

  • Webb T III, Cushing EJ, Wright HE Jr (1983) Holocene changes in the vegetation of the Midwest. In: Wright HE Jr (ed) Late-Quaternary environments of the United States. University of Minnesota Press, Minneapolis, MN, pp 142–165

    Google Scholar 

  • WGNHS (2006) Bedrock Stratigraphic units in Wisconsin. Wis Geol Nat Hist Surv Open File Rep 2006-06

  • Williams JW, Shuman B, Bartlein PJ (2009) Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob Planet Chang 66:195–207

    Article  Google Scholar 

  • Williams JW, Shuman B, Bartlein PJ, Diffenbaugh NS, Webb T III (2010) Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135–138

    Article  Google Scholar 

  • Winter TC (2000) The vulnerability of wetlands to climate change: a hydrologic landscape perspective. J Am Water Resour Assoc 36(2):305–311

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water, a single resource. US Geol Surv Circ 1139

  • Wolter CF, Mc Kay RM, Liu H, Bounk MJ, Libra RD (2011) Geologic mapping for water quality projects in the Upper Iowa River Watershed. IGWS Technical Information Series 54, Iowa Geological and Water Survey, Iowa City, IA

Download references

Acknowledgements

We thank Beth Ames, Steve Ballou, Kylie Larson-Robl, and Evan Mascitti for field and lab assistance; property owners for allowing access to wells and springs; and the members of the 2009 Keck Geology Consortium Wisconsin project for laying the groundwork for this research. We appreciate the cooperation and participation of the Wisconsin Geological and Natural History Survey in the borehole geophysical logging. We also thank Jonathon Carter, Walter Dragoni, and Seifu Kebede for their thoughtful comments on the manuscript. This work was supported by a grant from the University of Wisconsin Water Resources Institute (WR11R004) as part of the State of Wisconsin’s Groundwater Research and Monitoring Program, a sub-award from the Keck Geology Consortium (NSF-REU 0648782), and the Sanger Summer Scholars Program at Beloit College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. Swanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, S.K., Muldoon, M.A., Polyak, V. et al. Evaluating shallow flow-system response to climate change through analysis of spring deposits in southwestern Wisconsin, USA. Hydrogeol J 22, 851–863 (2014). https://doi.org/10.1007/s10040-014-1115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1115-3

Keywords

Navigation