Skip to main content

Advertisement

Log in

The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States

Le rôle des transferts d’eaux souterraines interbassins dans des formations géologiques complexes, exemple du Grand Bassin, Ouest des Etats-Unis

El papel de las transferencias de agua subterránea intercuencas en terrenos geológicamente complejos, demostrado por la Great Basin en el oeste de Estados Unidos

地质复杂岩层中跨流域地下水转移的作用—以美国西部大盆地为例

Importância das transferências de água subterrânea entre bacias hidrográficas em terrenos geologicamente complexos, demonstrada pela Grande Bacia no oeste dos Estados Unidos

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In the Great Basin, USA, bedrock interbasin flow is conceptualized as the mechanism by which large groundwater fluxes flow through multiple basins and intervening mountains. Interbasin flow is propounded based on: (1) water budget imbalances, (2) potential differences between basins, (3) stable isotope evidence, and (4) modeling studies. However, water budgets are too imprecise to discern interbasin transfers and potential differences may exist with or without interbasin fluxes. Potentiometric maps are dependent on conceptual underpinnings, leading to possible false inferences regarding interbasin transfers. Isotopic evidence is prone to non-unique interpretation and may be confounded by the effects of climate change. Structural and stratigraphic considerations in a geologically complex region like the Great Basin should produce compartmentalization, where increasing aquifer size increases the odds of segmentation along a given flow path. Initial conceptual hypotheses should explain flow with local recharge and short flow paths. Where bedrock interbasin flow is suspected, it is most likely controlled by diversion of water into the damage zones of normal faults, where fault cores act as barriers. Large-scale bedrock interbasin flow where fluxes must transect multiple basins, ranges, and faults at high angles should be the conceptual model of last resort.

Résumé

Dans le Grand Bassin, Etats-Unis, l’écoulement interbassin en domaine de socle constitue un mécanisme par lequel des flux importants d’eaux souterraines s’écoulent à travers plusieurs bassins et seuils associés. Le mécanisme d’écoulement interbassin proposé est basé sur: (1) les déséquilibres de bilans, (2) les différences de charge hydraulique entre bassins, 3) les preuves apportées par les isotopes stables, et (4) des études de modélisation. Cependant, les bilans de nappe sont trop peu précis pour discerner les transferts interbassins, et des différences de charge peuvent exister, avec ou sans transferts interbassins. Les cartes piézométriques dépendent de concepts sous-jacents, conduisant à des déductions erronées quant aux transferts interbassins. L’expertise isotopique est sujette à interprétations multiples et faussée par les effets du changement climatique. Les considérations structurales et stratigraphiques dans une région géologiquement complexe telle celle du Grand Bassin devraient conduire à une compartimentation, où l’augmentation de la taille d’un aquifère augmente les particularités suivant un axe d’écoulement donné. Les hypothèses conceptuelles initiales devraient expliquer un écoulement avec une recharge locale et des chemins d’écoulements courts. Là où l’on suppose un flux interbassin à travers le socle il est très probablement contrôlé par l’écoulement de l’eau à travers les zones altérées de failles normales, dont les plans jouent le rôle de barrières. L’écoulement interbassins à grande échelle à travers le socle, où les flux doivent traverser des bassins multiples, des seuils et des failles à fort pendage, devrait être le modèle conceptuel de dernier recours.

Resumen

En la Great Basin, EEUU, el flujo intercuenca en el basamento está conceptualizado como el mecanismo por el cual grandes flujos de agua subterránea fluyen a través de múltiples cuencas y de las montañas interpuestas. Se propuso el flujo intercuenca basado en: (1) desequilibrios en el balance de agua, (2) diferencias potenciales entre cuencas, (3) evidencias de isótopos estables, y (4) estudios de modelación. Sin embargo, los balances de agua son demasiados imprecisos para discernir las transferencias intercuencas y pueden existir diferencias de potencial con o sin flujos intercuencas. Los mapas potenciométricos dependen de fundamentos conceptuales, que conducen a a posibles inferencias falsas en relación a las transferencias intercuencas. La evidencia isotópica es propensa a una interpretación que no es única y puede ser confundida por los efectos del cambio climático. Las consideraciones estructurales y estratigráficas en una región geológicamente compleja como la Great Basin deben producir una compartimentación, donde el tamaño creciente del acuífero incrementa las posibilidades de segmentación a lo larga de una trayectoria de flujo dada. Las hipótesis conceptuales iniciales las deben explicar el flujo de con la recarga local y las trayectorias cortas de flujo. Se sospecha que la existencia del flujo intercuencas en el basamento está muy probablemente controlado por el desvío dentro de las zonas de daño de las fallas normales, donde los núcleos de las falla actúan como barreras. El flujo intercuenca en el basamento a gran escala donde los flujos deben atravesar múltiples cuencas, cordilleras y fallas de alto ángulo deben ser el modelo conceptual del último recurso.

摘要

在美国大盆地,基岩跨流域水流机理概念化为大的地下水通量流经多个盆地和介于中间的山脉。跨流域水流基于下列原因而提出:(1)水量收支不平衡,(2)流域之间的势差,(3)稳定同位素证据,(4)建模研究。然而,水量收支很不精确以至于不能识别流域间的转移,有流域间通量或没有流域间通量,都可能存在势差。静水压面图取决于概念基础,导致跨流域转可能移虚假的推断。同位素证据倾向于非唯一解译,可能被气候变化影响所混淆。地质复杂地区如大盆地中构造及地层上的考量应该能够对此划分,在此,增大的含水层规模增加了沿水流流径的分割的可能性。最初概念假设可以解释具有当地补给及短流径的水流。在 怀疑有基岩跨流域水流的地方,水流很可能受水转移进入正常断层损伤带的控制,在正常断层,断层核心充当屏障。通量很可能高角度横切多个盆地、山脉和 断层的大型基岩跨流域水流应当是不得已的概念模型。

Resumo

Na Grande Bacia, nos EUA, concetualiza-se o escoamento no bedrock entre bacias hidrográficas, como o mecanismo pelo qual grandes fluxos subterrâneos atravessam múltiplas bacias e montanhas intercaladas. A suposição da existência de fluxo subterrâneo entre bacias baseia-se em: (1) desequilíbrios no balanço hídrico, (2) diferenças no potencial hidráulico entre bacias, (3) evidências de isótopos estáveis, e (4) estudos de modelação. No entanto, os balanços hídricos são demasiado imprecisos para diferenciar possíveis transferências entre bacias e, relativamente às diferenças de potencial hidráulico, estas podem existir independentemente de haver ou não fluxo entre bacias. Os mapas potenciométricos dependem de pressupostos concetuais, levando a possíveis falsas inferências relativamente às transferências entre bacias. As evidências isotópicas são sujeitas à interpretação não-exclusiva e podem ser confundidas pelos efeitos das alterações climáticas. Numa região geologicamente complexa, como a da Grande Bacia, as considerações estruturais e estratigráficas deverão induzir uma compartimentalização, onde, à medida que aumenta a dimensão de um aquífero, crescem as hipóteses de segmentação ao longo de um determinado caminho de fluxo. As suposições concetuais iniciais devem procurar explicar o escoamento com base em recarga local e caminhos de fluxo curtos. Onde se suspeita de fluxo subterrâneo entre bacias através do bedrock, ele será muito provavelmente controlado pelo desvio de água em zonas afetadas por falhas normais, onde os núcleos atuam como barreiras. O fluxo subterrâneo inter-bacias de grande escala através do bedrock deve atravessar várias bacias, cadeias montanhosas e falhas com ângulos elevados e deverá ser considerado o modelo concetual de último recurso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anderson K, Nelson ST, Mayo AL, Tingey DG (2006) Interbasin flow revisited: the contribution of local recharge to high discharge springs, Death Valley, CA. J Hydrol 323:276–302

    Article  Google Scholar 

  • Ashland FX, Bishop CE, Lowe M, Mayes BH (2001) The geology of the Snyderville basin, western Summit County, and its relation to ground-water conditions. Utah Geol Surv Water Resour Bull 28, 59 pp, 15 plates

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, Minneola, NY

  • Belcher WR, Faunt CC, D’Agnese FA (2002) Three dimensional hydrogeologic framework model for use with a steady state numerical ground-water flow model of the death valley regional flow system, Nevada and California. US Geol Surv Water Resour Invest Rep 01–4254, 87 pp

  • Belcher WR, Bedinger MS, Back JT, Sweetkind DS (2009) Interbasin flow in the great basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S. J Hydrol 369(1–2):30–43. doi:10.1016/j.jhydrol.2009.02.048

    Article  Google Scholar 

  • Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30:315–318

    Article  Google Scholar 

  • Bushman M, Nelson ST, Tingey D, Eggett D (2010) Regional groundwater flow in structurally-complex extended terranes: an evaluation of the sources of discharge at Ash Meadows, Nevada. J Hydrol 386:118–129. doi:10.1016/j.jhydrol.2010.03.013

    Article  Google Scholar 

  • Caine JS, Minor SA (2005) Implications for syn-faulting fluid flow from macroscopic fault rock textures and geochemistry: the San Ysidro fault, Albuquerque Basin, New Mexico. Geol Soc Am Abstr Programs 37(7):496–496

    Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  • Caine JS, Minor SA, Grauch VJS, Hudson MR (2002) Potential for fault zone compartmentalization of groundwater aquifers in poorly lithified, Rio Grande rift-related sediments, New Mexico. Geol Soc Am Abstr Programs 34(4):59–59

    Google Scholar 

  • Davisson ML, Smith DK, Kenneally J, Rose TP (1999) Isotope hydrology of southern Nevada groundwater: stable isotopes and radiocarbon. Water Resour Res 35(1):279–294. doi:10.1029/1998WR900040

    Article  Google Scholar 

  • Dettinger MD (1989) Distribution of carbonate-rock aquifers in southern Nevada and the potential for their development: summary of findings, 1985–88. Summary report no. 1, Program for the Study and Testing of Carbonate-Rock Aquifers in Eastern and Southern Nevada, Carson City, NV, 37 pp

  • Eakin TE (1966) A regional interbasin ground-water system in the White River area, southeastern NV. Water Resour Res 2(2):251–271

    Article  Google Scholar 

  • Eakin TE, Moore DO (1964) Uniformity of discharge of Muddy River springs, southeastern NV and relation to interbasin movement of ground water. US Geol Surv Prof Pap 501D

  • Evans JP, Lachmar TL, Robeson K, Scheib B, Shipton Z, Forster CB, Snelgrove SS (1999) Detailed three-dimensional fault zone structure and hydraulic properties of the Big Hole normal fault Utah. AAPG Annual Convention, San Antonio, TX, April 1979, p A39

  • Faunt CC (1997) Effect of faulting on ground-water movement in the Death Valley region, Nevada and California. US Geol Surv Water Resour Invest Rep 95–4132, 42 pp, 1 sheet

  • Faunt CC, Blainey JB, Hill MC, D’Agnese FA, O’Brien GM (2010) Transient numerical model. U S Geol Surv Prof Pap 1711:251–344

    Google Scholar 

  • Ferrill DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A, Morris AP (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9:1–8

    Google Scholar 

  • Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow 2: effects of water-table configuration and subsurface permeability variation. Water Resour Res 3:623–634

    Article  Google Scholar 

  • Friedman I, Smith GI, Gleason JD, Warden A, Harris JM (1992) Stable isotope composition of waters in southeastern California: 1. modern precipitation. J Geophys Res 97:5795–5812

    Article  Google Scholar 

  • Gans PB, Miller EL, McCarthy J, Ouldcott ML (1985) Tertiary extensional faulting and evolving ductile-brittle transition zones in the northern Snake Range and vicinity: new insights from seismic data. Geology 13(3):189–193

    Article  Google Scholar 

  • Gardner PM, Masbruch MD, Plume RW, Buto SG (2011) Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver counties, Utah and White Pine and Lincoln counties, Nevada. US Geol Surv Sci Invest Map 3193, 2 sheets

  • Garringer LJ, Fairley JP, Hinds JJ, Nicholson KN (2004) A conceptual model of fluid circulation in a normal fault system. Geol Soc Am Abstr Programs 36:141

    Google Scholar 

  • Geraud Y, Diraison M, Orellana N (2006) Fault zone geometry of a mature active normal fault: a potential high permeability channel (Pirgaki fault, Corinth rift, Greece). Tectonophysics 425:61–76

    Article  Google Scholar 

  • Gillespie J, Nelson ST, Mayo AL, Tingey DG (2012) Why conceptual flow models matter: a trans-boundary example from the arid Great Basin, western USA. Hydrogeol J 20(6):1133–1147

    Google Scholar 

  • Harrill JR, Gate, JS, Thomas JM (1988) Major Ground-Water Flow Systems in the Great Basin Region of Nevada, Utah, and Adjacent states. US Geol Surv Hydrol Invest Atlas HA-694-C, scale 1:1,000,000

  • Harrill JR, Prudic DE (1998) Aquifer systems in the Great Basin Region of Nevada, Utah, and Adjacent states; summary report. US Geol Surv Prof Pap, A1-A66

  • Heilweil, VM, Brooks DD (2011) Conceptual model of the great basin carbonate and alluvial aquifer system: Potentiometric-surface map and likelihood of hydraulic connections across hydrographic boundaries of the Great Basin carbonate and alluvial aquifer systems study area. US Geol Surv Sci Invest Rep 2010–5193

  • Heilweil VM, Sweetkind DS, Susong DD (2011) Introduction, chap A. In: Heilweil VM, Brooks DD (eds) Conceptual model of the great basin carbonate and alluvial aquifer system. US Geol Surv Sci Invest Rep 2010–5193, pp 3–14

  • Hershey RL, Mizell SA, Earman S (2010) Chemical and physical characteristics of springs discharging from regional flow systems of the carbonate-rock province of the Great Basin, western United States. Hydrogeol J 18(4):1007–1026. doi:10.1007/s10040-009-0571-7

    Article  Google Scholar 

  • Hintze LF, Kowallis BJ (2009) Geologic history of Utah. Spec Publ 9. Brigham Young University, Provo, UT, 225 pp

    Google Scholar 

  • Hood JW, Rush FE (1965) Water-resources appraisal of the Snake Valley area, Utah and Nevada. Tech. Publ. no. 14. Utah State Engineer, Salt Lake City, UT, 43 pp

    Google Scholar 

  • Hunt CB, Mabey DR (1966) Stratigraphy and structure Death Valley, California. US Geol Surv Prof Pap 494-A, 162 pp

  • Hurlow HA (2002) The geology of the Kamas-Coalville region, Summit County, Utah, and its relation to ground-water conditions. Utah Geol Surv Water Resour Bull 29, 55 pp, 10 plates

  • IAEA (2001) GNIP maps and animations. International Atomic Energy Agency, Vienna. Accessible at http://isohis.iaea.org. Accessed January 2014

  • Kirk ST, Campana ME (1990) A deuterium-calibrated groundwater flow model of a regional carbonate-alluvial system. J Hydrol 119:357–388

    Article  Google Scholar 

  • Lachmar TE, Bradbury KK, Evans JP (2002) Structure and hydrogeology of deformed sedimentary bedrock aquifers, western Summit County, Utah. Environ Eng Geosci 8:219–236

    Article  Google Scholar 

  • Landwehr JM, Coplen TB, Ludwig KR, Winograd IJ, Riggs AC (1997) Data for Devils Hole core DH-11. US Geol Surv Open-File Rep 97–792, 8 pp

  • Ludington S, Moring BC, Miller RJ, Flynn K, Hopkins MJ, Stone P, Bedford DR, Haxel GA (2005) Preliminary integrated geologic map databases for the United States western states: California, Nevada, Arizona, and Washington, version 1.0. US Geol Surv Open-File Rep 2005–1305

  • Machette MN, Stephenson WJ, Williams RA, Odum JK, Worley DM, Dart RL (2000) Seismic-reflection investigations of the Texas Springs syncline for ground water development, Death Valley National Park. US Geol Surv Open-File Rep 00–106, 26 pp

  • Masbruch MD, Heilweil VM, Buto SG, Brooks LE, Susong DD, Flint, AL, Flint, LE, Gardner PM (2011) Conceptual model of the Great Basin carbonate and alluvial aquifer system, chap D. In: Heilweil VM, Brooks DD (eds) Estimated groundwater budgets. US Geol Surv Sci Invest Rep 2010–5193, pp 73–125

  • Maxey GB, Mifflin MD (1966) Occurrence and movement of ground water in carbonate rocks of Nevada. Natl Speleol Soc Bull 3(29):141–157

    Google Scholar 

  • Mayo AL, Morris TH, Peltier S, Petersen EC, Payne K, Holman LS, Tingey D, Fogel T, Black BJ, Gibbs TD (2003) Active and inactive groundwater flow systems: evidence from a stratified, mountainous terrain. Bull Geol Soc Am 115(12):1456–1472. doi:10.1130/B25145.1

    Article  Google Scholar 

  • McAllister JF (1970) Geology of the Furnace Creek Borate Area, Death Valley, Inyo County, California. Division of Mines and Geology Map Sheet 14, California Dept. of Conservation, Sacramento, CA, Scale 1:24,000

  • Micarelli L, Benedicto A, Wibberley CAJ (2006) Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. J Struct Geol 28:1214–1227

    Article  Google Scholar 

  • Mifflin MD (1968) Delineation of ground-water flow systems in Nevada. Tech. Rep. (Series H–W), Hydrol Water Resour Publ 4, Desert Research Institute, Reno, NV, 103 pp

  • Miner RE, Nelson ST, Tingey DG, Murrell MT (2007) Using fossil spring deposits in the Death Valley region, USA to evaluate palaeoflowpaths. J Quat Sci 22:373–386. doi:10.1002/jqs.1077

    Article  Google Scholar 

  • Minor SA, Hudson MR (2000) Hydrogeologic characterization of fault zones in the northern Albuquerque Basin, New Mexico. Geol Soc Am Abstr Programs 32(7):364–364

    Google Scholar 

  • Nelson ST, Anderson KW, Mayo AL (2004) Testing the interbasin flow hypothesis at Death Valley, CA, USA. EOS Trans AGU 85(349):355–356

    Google Scholar 

  • Nelson ST, Anderson KW, Mayo AL (2005) Reply to comment on ‘Testing the interbasin flow hypothesis at Death Valley, California. EOS Trans AGU 86:296

    Article  Google Scholar 

  • Nelson ST, Mayo AL, Gilfillan S, Dutson SJ, Harris RA, Shipton ZK, Tingey DG (2009) Enhanced fracture permeability and accompanying fluid flow in the footwall of a normal fault: the Hurricane fault at Pah Tempe Hot Springs, Washington County, Utah. Geol Soc Am Bull 121:236–246. doi:10.1130/B26285.1

    Google Scholar 

  • Nelson ST, Tingey DG, Selck B (2013) The denudation of ocean islands by ground and surface waters: the effects of climate, soil thickness, and water contact times on Oahu, Hawaii. Geochim Cosmochim Acta 103:276–294. doi:10.1016/j.gca.2012.09.046

    Article  Google Scholar 

  • Nichols WD (2000) Regional ground-water budgets and ground-water flow, eastern Nevada, chap C. In: Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada. US Geol Surv Prof Pap 1628, 82 pp

  • Paces JB, Forester RM, Whelan JF, Mahan SA, Bradbury JP, Quade J, Neymark LA, Kwak LM (1996) Synthesis of groundwater discharge deposits near Yucca Mountain. Milestone report 3GQH671M, US Department of Energy, Washington, DC, 75 pp

  • Pearson FJ, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating: isotope hydrology. IAEA Symposium Proceedings, Helsinki, Finland, June 1970, pp 271–286

  • Petit JR et al (2001) Vostok ice core data for 420 000 years. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2001–076. NOAA/NGDC Paleoclimatology Program, Boulder, CO

    Google Scholar 

  • Plume RW (1996) Hydrogeologic framework of aquifer systems in the Great Basin region of Nevada, Utah and adjacent states. US Geol Surv Prof Pap 1409-B, 64 pp

  • Potter CJ, Sweetkind DS, Dickerson RP, Killgore ML (2002) Hydrostructural maps of the Death Valley region flow system, Nevada and California. US Geol Surv Miscel Field Studies Map, Report MF-2372, 12 pp

  • PRISM (2012) Climate Group Oregon State University. http://www.prism.oregonstate.edu/. Accessed Sept. 2013

  • Prudic DE, Harrill JR, Burbey TJ (1995) Conceptual evaluation of regional ground-water flow in the carbonate-rock province of the Great Basin, Nevada, Utah, and adjacent states. US Geol Surv Prof Pap D1–D102

  • Quade J, Mifflin MD, Pratt WL, McCoy W, Burckle L (1995) Fossil spring deposits in the southern Freat Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada, during Quaternary time. Geol Soc Am Bull 107:213–230

    Article  Google Scholar 

  • Quade J, Forester RM, Pratt WL, Carter C (1998) Black mats, spring-fed streams, and late-glacial-age recharge in southern Great Basin. Quat Res 49:129–148

    Article  Google Scholar 

  • Quade J, Forester RM, Whelan JF (2003) Late Quaternary paleohydrologic and paleotemperature change in southern Nevada. Geol Soc Am Spec Pap 368:165–188

    Google Scholar 

  • Riggs AC, Carr WJ, Kolesar PT, Hoffman RJ (1994) Tectonic speleogenesis of Devils Hole, Nevada, and implications for hydrogeology and the development of long, continuous paleoenvironmental records. Quat Res 42:241–254

    Article  Google Scholar 

  • Rose TP, Davisson ML (2003) Isotopic and geochemical evidence for Holocene-age groundwater in regional flow systems of south-central Nevada. Geol Soc Am Spec Pap 368:143–164

    Google Scholar 

  • Rush FE, Kazmi SAT (1965) Water-resources appraisal of the Snake Valley area, Utah and Nevada. Water Resources Reconnaissance Ser Rep 33, Nevada Department of Conservation and Natural Resources, Reno, NV, 39 pp

  • Steinkampf WC, Werrell WL (2001) Ground-water flow to Death Valley as inferred from the chemistry and geohydrology of selected springs in Death Valley National Park, California and Nevada. US Geol Surv Sci Invest Rep 98–4114, 37 pp

  • Sweetkind DS, Dickerson RP, Blakely RJ, Denning PD (2001) Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California. US Geol Surv Miscel Field Studies Map MF-2370

  • Sweetkind DS, Cederburg, JR, Masbruch, MD, Buto, SG (2011a) Conceptual model of the Great Basin carbonate and alluvial aquifer system, chap B. In: Heilweil VM, Brooks DD (eds) Hydrogeologic framework. US Geol Surv Sci Invest Rep 2010–5193, pp 15–50

  • Sweetkind DS, Masbruch, MD, Heilweil, VM, and Buto, SG (2011b) Conceptual model of the Great Basin carbonate and alluvial aquifer system, chap C. In: Heilweil VM, Brooks DD (eds) Groundwater flow. US Geol Surv Sci Invest Rep 2010–5193, pp 51–72

  • Thomas JM, Welch AH, Dettinger MD (1996) Geochemistry and isotope hydrology of representative aquifers in the Great Basin region of Nevada, Utah, and adjacent states. US Geol Surv Prof Pap P 1409-C, 100 pp

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Welch AH, Bright DJ, Knochenmus LA (2007) Water resources of the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah. US Geol Surv Sci Invest Rep 2007–5261, 96 pp

  • Wilson JW (2007) Water-level surface maps of the carbonate-rock and basin-fill aquifers in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah: draft report. US Geol Surv Sci Invest Rep 2007–5089, 20 pp

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. Water Science and Application 9, American Geophysical Union, Washington, DC, pp 113–137

    Chapter  Google Scholar 

  • Winograd IJ (1962) Interbasin movement of ground water at the Nevada test site, NV. US Geol Surv Prof Pap 450C:C108–C111

    Google Scholar 

  • Winograd IJ, Friedman I (1972) Deuterium as a tracer of regional ground-water flow, southern Great Basin, Nevada and California. Geol Soc Am Bull 83:3691–3708. doi:10.1130/0016-7606(1972)83[3691:DAATOR]2.0.CO;2

    Article  Google Scholar 

  • Winograd IJ, Pearson FJ Jr (1976) Major carbon 14 anomaly in a regional carbonate aquifer: possible evidence for megascale channeling, south central Great Basin. Water Resour Res 12:1125–1143

    Article  Google Scholar 

  • Winograd IJ, Thordarson W (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site. US Geol Surv Prof Pap 712-C, 123 pp

  • Winograd IJ, Landwehr JM, Ludwig KR, Coplen TB, Riggs AC (1997) Duration and structure of the past four interglaciations. Quat Res 48:141–154

    Article  Google Scholar 

  • Winograd IJ, Riggs AC, Coplen TB (1998) The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol J 6:77–93

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a Brigham Young University mentoring environment grant, as well as funding and logistical support from the Department of Geological Sciences and the College of Physical and Mathematical Sciences. The authors appreciate the hard work and insights of graduate students that contributed much of the fundamental data. Excellent reviews from anonymous reviewers and the associate editor are especially appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, S.T., Mayo, A.L. The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States. Hydrogeol J 22, 807–828 (2014). https://doi.org/10.1007/s10040-014-1104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1104-6

Keywords

Navigation