Skip to main content

Advertisement

Log in

Quantifying baseflow and water-quality impacts from a gravel-dominated alluvial aquifer in an urban reach of a large Canadian river

Quantification du débit de base et des impacts sur la qualité de l’eau imputables à l’aquifère alluvial à prédominance graveleuse, dans la section urbaine d’une grande rivière canadienne

Cuantificación del flujo de base e impactos de la calidad del agua de un acuífero aluvial dominado por gravas en un área de un sector urbano en un gran río de Canadá

一条大的加拿大河城区段砾岩主导的冲积含水层定量基流和水质影响

Quantificação dos impactos no caudal de base e na qualidade da água de um aquífero aluvial grosseiro numa extensão urbana de um grande rio do Canadá

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater discharge and non-point source (NPS) loading were evaluated along an urban reach of an eastern-slopes Rocky Mountains river (Bow River, Canada) to understand sources of water-quality impacts and baseflow. The discharge did not increase measurably over a 16-km reach. Groundwater in the river-connected alluvial aquifer was a mixture of river and prairie groundwater, with elevated chloride concentrations (average 379 mg L–1) from road salt. Alluvial groundwater was the major NPS of chloride discharging to the river. Although the mass-flux based estimates of groundwater discharge were small (mean 0.02 m3 s–1 km–1, SD = 0.04 m3 s–1 km–1, n = 30), the associated chloride mass flux over 16 km was significant (equivalent to that discharged from the city’s largest wastewater-treatment-plant effluent). Although local groundwater baseflow was previously thought to contribute significantly to overwinter baseflow in this reach, little contribution was measured in this study. Low baseflow generation is consistent with long-term river discharge data that show almost all of the baseflow generation occurs in the Rocky Mountain reach. Thus, local watershed areas are important for water-quality protection, but climate change in the headwaters is most salient to long-term flow.

Résumé

Le débit de la nappe et la charge d’une source polluante non ponctuelle ont été évalués tout au long de la section urbaine d’une rivière du versant Est des Montagnes Rocheuses (Bow River, Canada) afin d’appréhender l’origine des impacts sur la qualité de l’eau et le débit de base. Le débit n’augmente pas de manière mesurable sur un tronçon de 16 km. L’eau de l’aquifère en relation avec la rivière est un mélange de l’eau de la rivière et de l’eau de la plaine alluviale avec des concentrations élevées en chlorures (moyenne de 379 mg L–1) provenant du salage de la route. La nappe alluviale est la principale source non ponctuelle des chlorures se déversant dans la rivière. Bien que les estimations du débit souterrain, basées sur le flux massique soient basses (moyenne 0.02 m3 s–1 km–1, écart type = 0.04 m3 s–1 km–1, n = 30), le flux massique des chlorures associés sur les 16 km est significatif (équivalent à ceux déversés par les effluents du site de traitement d’eaux usées le plus important de la ville). Bien qu’on pensât précédemment que le débit de base souterrain local contribuait de manière significative à l’écoulement de la période hivernale sur cette section, la contribution mesurée au cours de cette étude est faible. Le soutien d’un débit de base faible est compatible avec les données de débit de long terme de la rivière, données qui montrent que la presque totalité du débit de base est générée dans les Montagnes Rocheuses. Ainsi, les surfaces du bassin versant local sont importantes pour la protection de la qualité de l’eau, mais le changement de climat sur les cours supérieurs est déterminant pour le flux à long terme.

Resumen

Se evaluaron la descarga de agua subterránea y las fuentes de carga no puntuales (NPS) a lo largo de un sector urbano de un río del faldeo este de las Rocky Mountains (Río Bow, Canadá) para entender las fuentes de los impactos en la calidad del agua y en el flujo de base. La descarga no se incrementó mensurablemente en un sector de 16 km. El agua subterránea del acuífero aluvial conectado al río fue una mezcla de agua subterránea del río y de la pradera, con una elevada concentración de cloruro (promedio 379 mg L–1) proveniente de sal de carretera. El agua subterránea aluvial fue el principal NPS de cloruro de descarga al río. Aunque la estimación del flujo de masa de base de la descarga de agua subterránea fueron pequeñas (media 0.02 m3 s–1 km–1, desvío estándar = 0.04 m3 s–1 km–1, n = 30), el flujo asociado de masa de cloruro sobre los 16 km fue significativo (equivalente a la descarga de la planta de tratamiento de efluentes de aguas servidas más grande de la ciudad). Aunque previamente se pensó que el flujo de base local de agua subterránea local contribuía significativamente al flujo base invernal en este tramo, poca fue la contribución medida en este estudio. La baja generación de flujo de base es consistente con los datos de descarga del río a largo plazo que muestran casi toda la generación del flujo de base que ocurre en el sector del Rocky Mountains. Así las áreas de cuencas drenajes locales son importantes para la protección de la calidad del agua, pero del cambio en el clima en las cabeceras es más importante en el flujo a largo plazo.

摘要

评价了沿落基山脉东坡河(加拿大弓河)城区段地下水补给和非点源载荷,以了解水质影响源和基流。在16公里长的流域中,补给没有增加。在与河相连的冲积含水层中的地下水为河和草原地下水的混合水,增加的氯化物含量来自路上的盐分(平均每升379毫克)。冲积地下水是排泄到河里的氯化物的主要非点源。尽管基于质量流量的地下水补给估算值很小(平均0.02 m3 s–1 km–1,,SD = 0.04 m3 s–1 km–1, n = 30),但16公里长的相关的氯化物质量流量仍然很大(相当于从城市最大废水处理厂排泄的量)。尽管先前认为局部地下水基流对本流域过冬基流贡献很大,但本研究中测量到的很少。产生低的基流和和长期河流排泄资料一致,资料显示几乎所有产生的基流出现在落基山脉。因此,局部汇水区对水质保护非常重要,水头中的气候变化对长期水流来说是最显著的。

Resumo

Foi avaliada a descarga de água subterrânea e a carga contaminante de origem não pontual (ONP) ao longo da extensão urbana de um rio das vertentes orientais das Montanhas Rochosas (rio Bow, Canadá) para se perceberem as origens dos impactos da qualidade da água e do caudal de base. A descarga não aumentou mensuravelmente numa extensão de 16-km. A água subterrânea no aquífero aluvial conectado ao rio era uma mistura de água fluvial e de água subterrânea da pradaria, com concentração elevada de cloreto (média de 379 mg L–1) proveniente da aplicação de sal rodoviário. A água subterrânea aluvial era a principal ONP para o cloreto que descarrega para o rio. Apesar das estimativas baseadas no fluxo mássico da água de descarga serem baixas (média 0.02 m3 s–1 km–1, desvio padrão. = 0.04 m3 s–1 km–1, n = 30), o fluxo mássico de cloreto associado ao longo dos 16 km era significativo (equivalente ao descarregado pelo efluente da principal estação de tratamento de águas residuais da cidade). Apesar de se considerar previamente que o caudal de base local contribuía significativamente nesta extensão para o caudal de base invernal, neste estudo foi medida uma escassa contribuição. A geração de um caudal de base escasso é consistente com os dados de largo prazo da descarga fluvial que mostram que quase toda a geração de caudal de base ocorre na região das Montanhas Rochosas. Desta forma, as áreas da bacia hidrográfica local são importantes para a proteção da qualidade da água; porém, as alterações climáticas nas zonas altas da bacia são mais importantes para o caudal de base a largo prazo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajami H, Troch PA, Maddock T III et al (2011) Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships. Water Resour Res 47:1–14. doi:10.1029/2010WR009598

    Google Scholar 

  • Alberta Cooperative Research Program in Highway and River Engineering (1972) Hydraulic and geomorphic characteristics of rivers in Alberta. Alberta Cooperative Research Program in Highway and River Engineering, Edmonton, AB

  • American Public Health Association, American Water Works Association, Water Environment Federation (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Buchanan T, Somers W (1969) Applications of hydraulics. USGeolSurvTechWater-ResourInvest,book3, US Geological Survey, Washington, DC

    Google Scholar 

  • Cantafio L (2012) Groundwater-surface water interaction, non-point source chloride loading, and flow generation along an urban river. MSc Thesis, University of Calgary, Calgary, AB, Canada

  • Cardenas MB (2009) Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Res Res 45, W06429. doi:10.1029/2008WR007651

    Google Scholar 

  • Cey EE, Rudolph DL, Aravena R, Parkin G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67

    Google Scholar 

  • Chao Y (2011) Major ion and stable isotope geochemistry of the Bow River, Alberta, Canada. MSc Thesis, University of Calgary, Calgary, AB, Canada

  • Conant B Jr, Cherry JA, Gillham RW (2004) A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. J Contam Hydrol 73:249–279. doi:10.1016/j.jconhyd.2004.04.001

    Article  Google Scholar 

  • Cook PG (2012) Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol Proc. doi:10.1002/hyp.9493

    Google Scholar 

  • Covino TP, McGlynn BL (2007) Stream gains and losses across a mountain-to-valley transition: impacts on watershed hydrology and stream water chemistry. Water Resour Res 43:1–11. doi:10.1029/2006WR005544

    Google Scholar 

  • Covino T, McGlynn BL, Mallard J (2011) Stream-groundwater exchange and hydrologic turnover at the network scale. Water Resour Res 47:1–14. doi:10.1029/2011WR010942

    Google Scholar 

  • Doble R, Brunner P, McCallum J, Coo PG (2012) An analysis of river bank slope and unsaturated flow effects on bank storage. Groundwater 50:77–86. doi:10.1111/j.1745-6584.2011.00821.x

    Article  Google Scholar 

  • Ellis PA, Rivett MO (2007) Assessing the impact of VOC-contaminated groundwater on surface water at the city scale. J Contam Hydrol 91:107–127. doi:10.1016/j.jconhyd.2006.08.015

    Article  Google Scholar 

  • Gburek W, Folmar G (1999) Flow and chemical contributions to streamflow in an upland watershed: a baseflow survey. J Hydrol 217:1–18. doi:10.1016/S0022-1694(98)00282-0

    Article  Google Scholar 

  • Geobase (2007) National Hydro Network, Canada; 05B. [ESRI Shapefiles]. Mapped using ArcMap 9.3 and 10.0. Government of Canada, Natural Resources Canada, Earth Sciences Sector, Mapping Information Branch, Centre for Topographic Information, Sherbrooke, QC. Available at http://geobase.ca/geobase/en/data/nhn/index.html. Accessed 27 November 2012

  • Grasby SE, Hutcheon I, McFarland L (1999) Surface-water–groundwater interaction and the influence of ion exchange reactions on river chemistry. Geology 27:223–226

    Article  Google Scholar 

  • Grasby SE, Chen Z, Hamblin AP et al (2008) Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Can J Earth Sci 45:1501–1516. doi:10.1139/E08-069

    Article  Google Scholar 

  • Grasby SE, Osborn J, Chen Z et al (2010) Influence of till provenance on regional groundwater geochemistry. Chem Geol 273:225–237. doi:10.1016/j.chemgeo.2010.02.024

    Article  Google Scholar 

  • Harvey J, Bencala K (1993) The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29:89–98

    Article  Google Scholar 

  • Harvey JW, Wagner BJ, Bencala KE (1996) Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. Water Resour Res 32:2441–2451. doi:10.1029/96WR01268

    Article  Google Scholar 

  • Hayashi M, van der Kamp G, Rudolph DL (1998) Water and solute transfer between a prairie wetland and adjacent uplands, 1: water balance. J Hydrol 207:42–55. doi:10.1016/S0022-1694(98)00098-5

    Article  Google Scholar 

  • Heilweil VM, Stolp BJ, Kimball BA, Susong DD, Marston TM, Gardner PM (2013) A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development. Groundwater. doi:10.1111/gwat.12079

  • Hibbs BJ, Sharp JM (2012) Hydrogeological impacts of urbanization. Environ Eng Geosci 18:3–24. doi:10.2113/gseegeosci.18.1.3

    Article  Google Scholar 

  • Howard KWF, Haynes J (1993) Groundwater contamination due to road de-icing chemicals: salt balance implications. Geosci Can 20:1–8

    Google Scholar 

  • Iwanyshyn M, Ryan MC, Chu A (2008) Separation of physical loading from photosynthesis/respiration processes in rivers by mass balance. Sci Total Environ 390:205–214. doi:10.1016/j.scitotenv.2007.09.038

    Article  Google Scholar 

  • Katvala SM (2008) Isotope hydrology of the upper Bow River Basin, Alberta, Canada. MSc Thesis, University of Calgary, Calgary, AB

  • Kaushal SS, Groffman P, Likens GE et al (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102:13517–13520. doi:10.1073/pnas.0506414102

    Article  Google Scholar 

  • Kelly WR, Panno SV, Hackley KC (2012) Impacts of road salt runoff on water quality of the Chicago, Illinois, region. Environ Eng Geosci 18:65–81. doi:10.2113/gseegeosci.18.1.65

    Article  Google Scholar 

  • Konrad CP (2006) Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States. J Hydrol 329:444–470. doi:10.1016/j.jhydrol.2006.02.028

    Article  Google Scholar 

  • Larkin R, Sharp JM (1992) On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers. Geol Soc Am Bull 104:1608–1620

    Article  Google Scholar 

  • Lerner D (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10:143–152. doi:10.1007/s10040-001-0177-1

    Article  Google Scholar 

  • Manwell B, Ryan C (2006) Chloride as an indicator of non-point source contaminant migration in a shallow alluvial aquifer. Water Qual Res J Can 41:383–397

    Google Scholar 

  • Mau DP, Winter TC (1997) Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA. Ground Water 35:291–304. doi:10.1111/j.1745-6584.1997.tb00086.x

    Article  Google Scholar 

  • McCallum JL, Cook PG, Berhane D, Rumpf C, McMahon GA (2012) Quantifying groundwater flows to streams using differential flow gaugings and water chemistry. J Hydrol 416:118–132. doi:10.1016/j.jhydrol.2011.11.040

    Article  Google Scholar 

  • Meyboom P (1961a) Groundwater resources of the City of Calgary and vicinity. Alberta Research Council, Edmonton, AB

    Google Scholar 

  • Meyboom P (1961b) Estimating ground-water recharge from stream hydrographs. J Geophys Res 66:1203–1214

    Article  Google Scholar 

  • Moran S (1986) Surficial geology of the Calgary urban area. Alberta Research Council, Edmonton, AB

    Google Scholar 

  • Novotny EV, Murphy D, Stefan HG (2008) Increase of urban lake salinity by road deicing salt. Sci Total Environ 406:131–144. doi:10.1016/j.scitotenv.2008.07.037

    Article  Google Scholar 

  • Novotny EV, Sander AR, Mohseni O et al (2009) Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour Res. doi:10.1029/2009WR008141

    Google Scholar 

  • Ozoray G, Barnes R (1978) Hydrogeology of the Calgary-Golden area, Alberta. Alberta Research Council, Edmonton, AB

    Google Scholar 

  • Partington D, Brunner P, Simmons CT, Werner AD, Therrien R, Maier HR, Dandy GC (2012) Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. J Hydrol 459–459:28–39. doi:10.1016/j.jhydrol.2012.06.029

    Article  Google Scholar 

  • Payn RA, Gooseff MN, McGlynn BL (2009) Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States. Water Resour Res 45:1–14. doi:10.1029/2008WR007644

    Google Scholar 

  • Peng H (2004) Hydrogen and oxygen isotope abundance variations in precipitation at Calgary, Alberta, Canada. PhD Thesis, University of Calgary, Calgary AB, Canada

  • Peng H, Mayer M, Harris S, Krouse HR (2004) A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus 56B:147–156

    Google Scholar 

  • Perera N, Gharabaghi B, Noehammer P et al (2010) Road salt application in Highland Creek Watershed, Toronto, Ontario. Water Qual Res J Can 45:451–461

    Google Scholar 

  • Pernitsky DJ, Guy ND (2010) Closing the South Saskatchewan River Basin to new water licences: effects on municipal water supplies. Can Water Resour J 35:79–92

    Article  Google Scholar 

  • Pettapiece WW (1986) Physiographic subdivisions of Alberta [map]. 1:1,500,000. Land Resources Research Centre, Agriculture Canada, Ottawa. Available at http://sis.agr.gc.ca/cansis/publications/surveys/ab/abp/index.html. Accessed 27 November 2012

  • Pinder G, Sauer S (1971) Numerical simulation of flood wave modification due to bank storage effects. Water Resour Res 7:63–70

    Article  Google Scholar 

  • Ramakrishna DM, Viraraghavan T (2005) Environmental impact of chemical deicers: a review. Water Air Soil Pollut 166:49–63. doi:10.1007/s11270-005-8265-9

    Article  Google Scholar 

  • Rantz SE (1982) Measurement and computation of streamflow, vol 1: measurement of stage and discharge. US Geological Survey, Washington, DC

    Google Scholar 

  • Rivett MO, Ellis PA, Mackay R (2011) Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham, UK. J Hydrol 400:206–222. doi:10.1016/j.jhydrol.2011.01.036

    Article  Google Scholar 

  • Rock L, Mayer B (2007) Isotope hydrology of the Oldman River basin, southern Alberta, Canada. Hydrol Process 21:3301–3315. doi:10.1002/hyp.6545

    Article  Google Scholar 

  • Rorabaugh M (1964) Estimating changes in bank storage and ground-water contribution to streamflow. Int Assoc Sci Hydrol Publ 63:432–441

    Google Scholar 

  • Roy JW, Bickerton G (2010) Proactive screening approach for detecting groundwater contaminants along urban streams at the reach-scale. Environ Sci Technol 44:6088–6094. doi:10.1021/es101492x

    Article  Google Scholar 

  • Roy JW, Bickerton G (2012) Toxic groundwater contaminants: an overlooked contributor to urban stream syndrome? Environ Sci Technol 46:729–736. doi:10.1021/es2034137

    Article  Google Scholar 

  • Rutledge A (1992) Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces. In: Hotchkiss WR, Johnson AI (eds) Regional aquifer systems of the United States, aquifers of the southern and eastern states. Am Water Resour Assoc Monogr Series 17:59–73

  • Savage G (2006) Fate of Industrial Nitrogen in an Alluvial Aquifer. MSc Thesis, University of Calgary, Calgary, AB, Canada

  • Scanlon B, Healy R (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi:10.1007/s10040-0010176-2

    Article  Google Scholar 

  • Schilling KE, Wolter CF (2001) Contribution of base flow to nonpoint source pollution loads in an agricultural watershed. Ground Water 39:49–58. doi:10.1111/j.1745-6584.2001.tb00350.x

    Article  Google Scholar 

  • Shepherd K, Ellis P, Rivett M (2006) Integrated understanding of urban land, groundwater, baseflow and surface-water quality: the City of Birmingham, UK. Sci Total Environ 360:180–195. doi:10.1016/j.scitotenv.2005.08.052

    Article  Google Scholar 

  • Squillace PJ, Thurman EM, Furlong ET (1993) Groundwater as a nonpoint source of atrazine and deethylatrazine in a river during base flow conditions. Water Resour Res 29:1719–1729. doi:10.1029/93WR00290

    Article  Google Scholar 

  • Taylor JR (1982) An introduction to error analysis. University Science Books, Herndon, VA

    Google Scholar 

  • Thibodeaux LJ, Boyle JD (1987) Bedform-generated convective transport in bottom sediment. Nature 325:341–343. doi:10.1038/325341a0

    Article  Google Scholar 

  • Trauth R, Xanthopoulos C (1997) Non-point pollution of groundwater in urban areas. Water Resour Res 31:2711–2718

    Google Scholar 

  • Triska F, Kennedy V, Avanzino R et al (1989) Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. Ecology 70:1893–1905

    Article  Google Scholar 

  • Valeo C, Xiang Z, Bouchart FJ-C, Yeung P, Ryan MC (2007) Climate change impacts in the Elbow River Watershed. Can Water Res J 32:1–18

    Article  Google Scholar 

  • van der Kamp G, Hayashi M (2008) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17:203–214. doi:10.1007/s10040-008-0367-1

    Article  Google Scholar 

  • Vandenberg JA, Ryan MC, Chu A (2005) Field evaluation of mixing length and attenuation of nutrients and fecal coliform in a wastewater effluent plume. Env Monit Assess 107:45–57

    Article  Google Scholar 

  • Vaux W (1968) Intragravel flow and interchange of water in a streambed. Fish B-NOAA 66:479–489

    Google Scholar 

  • Viviroli D, Dürr H, Messerli B (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43:1–13. doi:10.1029/2006WR005653

    Google Scholar 

  • Water Survey of Canada (2010) Hydrometric data. http://www.wsc.ec.gc.ca/applications/H2O/index-eng.cfm. Accessed 10 Dec 2012

  • White D (1993) Perspectives on defining and delineating hyporheic zones. J N Am Benthol Soc 12:61–68

    Article  Google Scholar 

  • Winter T, Harvey J, Franke O et al (1998) Ground water and surface water a single resource. US Geol Surv Circ1139. US Geological Survey, Denver, CO

    Google Scholar 

  • Wittenberg H (2003) Effects of season and man-made changes on baseflow and flow recession: case studies. Hydrol Process 17:2113–2123. doi:10.1002/hyp.1324

    Article  Google Scholar 

  • Wittenberg H, Aksoy H (2010) Groundwater intrusion into leaky sewer systems. Water Sci Technol 62:92–98. doi:10.2166/wst.2010.287

    Article  Google Scholar 

  • Woessner W (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38:423–429

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by NSERC and the City of Calgary through the Industrial Post Graduate Scholarship program (AID 395711). The authors thank William Mathews, Nadine Taube, Cameron Robinson, Megan Semel, Nina Modeland, Chelsea Parker, Farzin Malekani, and Craig Pass for assistance. Review comments from Alan Fryar and one anonymous reviewer are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantafio, L.J., Ryan, M.C. Quantifying baseflow and water-quality impacts from a gravel-dominated alluvial aquifer in an urban reach of a large Canadian river. Hydrogeol J 22, 957–970 (2014). https://doi.org/10.1007/s10040-013-1088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1088-7

Keywords

Navigation