Skip to main content
Log in

A transmissivity model for deformation zones in fractured crystalline rock and its possible correlation to in situ stress at the proposed high-level nuclear waste repository site at Forsmark, Sweden

Un modèle de transmissivité pour des zones de déformation dans des roches cristallines fracturées et sa corrélation possible avec une contrainte in situ sur le site de stockage de déchets nucléaires haute activité projeté à Forsmark, Suède

Un modelo de transmisividad para las zonas de deformación en rocas cristalinas fracturadas y su posible correlación con las tensiones in situ en el sitio propuesto para el repositorio de residuos nucleares de alta radiactividad en Forsmark, Suecia

Um modelo da transmissividade para zonas de deformação em rochas cristalinas fraturadas e sua possível correlação com a tensão in situ no local do proposto repositório de resíduos nucleares de alto nível de Forsmark, Suécia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Forsmark site was recently proposed by the Svensk Kärnbränslehantering AB (SKB) to serve as the potential site for construction of a future geological repository for spent high-level nuclear fuel at about 470 m depth in fractured crystalline rock. The considerations included, among other things, distance from regionally significant deformation zones with highly strained rock, lithological homogeneity, low hydraulic conductivity, groundwater salinity with an acceptable range, and lack of potential mineral resources. This report describes the calculation of transmissivity of deduced deformation zones at Forsmark and the transmissivity model used in the regional groundwater flow modeling carried out in support of the integrated site description. Besides significant decrease with increasing depth (more than four orders of magnitude over a depth of about 1 km), the calculated transmissivity values also reveal considerable spatial variability along the strikes of the zones, i.e. lateral heterogeneity (more than two orders of magnitude). A hydro-mechanical coupling is discussed, based on presented models for the tectonic evolution and the principal stress tensor. Tentatively, laboratory-scale relationships developed from normal stress experiments on a single fracture in crystalline rock can be used to estimate the maximum values of transmissivity of deduced deformation zones at Forsmark.

Résumé

La compagnie de gestion du combustible et des déchets nucléaires suédois a récemment proposé le site de Forsmark pour servir d'emplacement potentiel à la construction d'un futur dépôt géologique de combustible nucléaire haute activité usé à environ 470 m de profondeur dans des roches cristallines fracturées. Les considérations ont inclus, entre autres, la distance des zones de déformation régionalement significatives comprenant des roches sous forte tension, l’homogénéité lithologique, la faible conductivité hydraulique, la salinité des eaux souterraines dans une gamme acceptable, et l’absence de ressources minérales potentielles. Cet article décrit le calcul de la transmissivité des zones de déformation déduites à Forsmark et le modèle de transmissivité utilisé dans un modèle régional d'écoulement d'eaux souterraines réalisé en appui à la description intégrée du site. En plus d’une diminution significative avec l'augmentation de la profondeur (plus de quatre ordres de grandeur pour une profondeur d'environ 1 km), les valeurs calculées de transmissivité indiquent également une variabilité spatiale considérable le long des failles de ces zones, c.-à-d. une hétérogénéité latérale (plus de deux ordres de grandeur). Un couplage hydromécanique est discuté, basé sur les modèles présentés pour l'évolution tectonique et le tenseur de contraintes principales. À titre d'essai, des relations à l’échelle du laboratoire développées à partir d’essais de contraintes normales sur une fracture unique dans une roche cristalline peuvent être utilisées pour estimer les valeurs maximales de transmissivité des zones de déformation déduites à Forsmark.

Resumen

El sitio de Forsmark fue propuesto recientemente por la Svensk Kärnbränslehantering AB para servir como un lugar potencial para la construcción de un futuro repositorio geológico para combustible nuclear usado de alta radiactividad a alrededor de 470 m en rocas cristalinas fracturadas. Las consideraciones incluían, entre otras cosas, la distancia de zonas de deformación regional significativas con altas deformaciones de la roca, la homogeneidad litológica, la baja conductividad hidráulica, la salinidad del agua subterránea dentro de un rango aceptable, y la carencia de potenciales recursos minerales. Este trabajo describe el cálculo de la transmisividad de las zonas de deformación deducidas en Forsmark y los modelos de transmisividad usados en el modelado del flujo regional del agua subterránea realizados en apoyo de una descripción integrada del sitio. Además de la disminución significativa con el incremento de la profundidad (más que cuatro órdenes de magnitud para una profundidad de alrededor de 1 km), los valores calculados de la transmisividad revelan una considerable variabilidad espacial a lo largo de los rumbos de las zonas, es decir la heterogeneidad lateral (más de dos órdenes de magnitud). Se discute un acoplamiento hidromecánico, basado en los modelos presentes para la evolución tectónica y el tensor principal de tensiones. Tentativamente, relaciones en escala de laboratorio desarrollado a partir de experimentos de tensión normal sobre una sola fractura en rocas cristalinas pueden ser usados para estimar los valores máximos de transmisividad de las zonas de deformación deducidas para Forsmark.

Resumo

O local de Forsmark foi recentemente proposto pela companhia Sueca de Combustível Nuclear e Gestão de Resíduos para servir como local potencial para a construção de um futuro repositório geológico para combustível nuclear usado de alto nível em rochas cristalinas fraturadas, a cerca de 470 m de profundidade. As considerações incluíram, entre outras coisas, a distância a zonas de deformação com significado regional, com rochas altamente deformadas, homogeneidade litológica, condutividade hidráulica baixa, salinidade da água subterrânea num intervalo aceitável e a inexistência potencial de recursos minerais. Este artigo descreve o cálculo das transmissividades em zonas de deformação inferidas em Forsmark e o modelo de transmissividade usado na modelação do fluxo regional da água subterrânea realizados como apoio à descrição integrada do local. Para além da diminuição significativa com o aumento da profundidade (mais de quatro ordens de magnitude ao longo de uma profundidade de cerca de 1 km) os valores de transmissividade calculados também revelam uma variabilidade espacial considerável ao longo das orientações das zonas, i.e. heterogeneidade lateral (mais de duas ordens de magnitude). É discutida uma ligação hidromecânica, com base nos modelos apresentados para a evolução tectónica, para o tensor principal das tensões. Experimentalmente, as relações à escala de laboratório, desenvolvidas a partir de experiências com tensões normais numa única fratura em rocha cristalina, podem ser usadas para estimar os valores máximos de transmissividade em zonas de deformação inferidas em Forsmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson J, Skagius K, Winberg A, Ström A, Lindborg T (2007) Site descriptive modeling as a part of site characterisation in Sweden: concluding the surface based investigations. Paper presented at the 11th Int. Conf. on Environmental Remediation and Radioactive Waste Management (ICEM2007). Bruges, Belgium

    Google Scholar 

  • Andersson J, Skagius K, Winberg A, Lindborg T, Ström A (2013) Site descriptive modeling for a final repository for spent nuclear fuel in Sweden. Environ Earth Sci 69(3):1045–1060. doi:10.1007/s12665-013-2226-1

    Article  Google Scholar 

  • Ask D, Cornet F, Fonbonne F (2007) Forsmark site investigation: stress measurements with hydraulic methods in boreholes KFM07A, KFM07C, KFM08A, KFM09A and KFM09B. SKB P-07-206, Svensk Kärnbränslehantering AB, Stockholm

  • Bath A, Lalieux P (1999) Technical summary of the SEDE Workshop on the use of hydrogeochemical information in testing groundwater flow models. In: Use of hydrogeochemical information in testing groundwater flow models. Technical summary and proceedings of an NEA Workshop, Borgholm, Sweden, 1–3 September 1997. Co-ordinating Group on Site Evaluation and Design of Experiments for Radioactive Waste Disposal (SEDE), OECD-NEA, Paris

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028. doi:10.1130/0091-7613(1996)024 < 1025:FZAAPS > 2.3.CO;2

    Article  Google Scholar 

  • Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Min Sci Geomech Abstr 29(3):198–223. doi:10.1016/0148-9062(92)93656-5

    Article  Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers. Academic, London

    Google Scholar 

  • Easki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Mining Sci 36(5):641–650. doi:10.1016/S0148-9062(99)00044-3

    Article  Google Scholar 

  • Ericsson L-O, Brinkhoff P, Gustafson G, Kvartsberg S (2010) Hydraulic features of the excavation disturbed zone: laboratory investigations of samples taken from the Q- and S- tunnels at Äspö HRL. SKB R-09-45, Svensk Kärnbränslehantering AB, Stockholm

  • Follin S (2008) Rock hydrogeology Forsmark: site descriptive modelling—SDM-Site Forsmark. SKB R-08-95, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Follin S, Johansson P-O, Hartley L, Jackson P, Roberts D, Marsic N (2007a) Hydrogeological conceptual model development and numerical modelling using ConnectFlow: Forsmark modelling stage 2.2, SKB R-07-49, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Follin S, Levén J, Hartley L, Jackson P, Joyce S, Roberts D, Swift B (2007b) Hydrogeological characterisation and modelling of deformation zones and fracture domains: Forsmark modelling stage 2.2. SKB R-07-48, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Follin S, Hartley L, Jackson P, Roberts D, Marsic N (2008a) Conceptual model development and numerical modelling using ConnectFlow: Forsmark modelling stage 2.3. SKB R-08-23, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Follin S, Stephens MB, Laaksoharju M, Nilsson A-C, Smellie JAT, Tullborg E-L (2008b) Modelling the evolution of hydrochemical conditions in the Fennoscandian Shield during Holocene time using multidisciplinary information. Appl Geochem 23(7):2004–2020. doi:10.1016/j.apgeochem.2008.02.022

    Article  Google Scholar 

  • Fox A, La Pointe P, Hermanson J, Öhman J (2007) Statistical geological discrete fracture network model: Forsmark modelling stage 2.2. SKB R-07-46, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Glamheden R, Fredriksson A, Röshoff K, Karlsson J, Hakami H, Christiansson R (2007) Rock Mechanics Forsmark: site descriptive modeling Forsmark stage 2.2. SKB R-07-31, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Hakami E, Hakami H, Cosgrove J (2002) Strategy for a rock mechanics site descriptive model: development and testing of an approach to modelling the state of stress. SKB R-02-03, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Hakami H (2006) Numerical studies on spatial variation of the in situ stress filed at Forsmark: a further step—site descriptive modelling Forsmark, stage 2.1. SKB R-06-124, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • IAEA (1999) Hydrogeological investigations of sites for the geological disposal of radioactive waste. Technical report 391, International Atomic Energy Agency, Vienna

    Google Scholar 

  • Indraratna B, Ranjith PG, Gale W (1999) Single phase water flow through rock fractures. Geotechn Geol Eng 17(3–4):211–240. doi:10.1023/A:1008922417511

    Article  Google Scholar 

  • Iwano M, Einstein H (1995) Laboratory experiments on geometric and hydromechanical characteristics of three different fractures in granodiorite. Proc. 8th ISRM Congress on Rock Mechanics, Tokyo, Balkema, Rotterdam, vol 2, pp 743–750

    Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Juhlin C, Stephens MB (2006) Gently dipping fracture zones in Paleoproterozoic metagranite, Sweden: evidence from reflection seismic and cored borehole data and implications for the disposal of nuclear waste. J Geophys Res 111, B09302. doi:10.1029/2005JB003887

    Google Scholar 

  • Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2,000,000. Geological Surveys of Finland (Espoo), Norway (Trondheim) and Sweden (Uppsala) and the North-West Department of Natural Resources of Russia (Joensuu)

  • Lee HS, Cho TF (2002) Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mech Rock Eng 35(4):299–318. doi:10.1016/s00603-002-0028-y

    Article  Google Scholar 

  • Louis C (1974) Rock mechanics. Elsevier, New York

    Google Scholar 

  • Ludvigson J-E, Hansson K, Rouhiainen P (2002) Methodology study of Posiva difference flow meter in borehole KLX02 at Laxemar. SKB R-01-52, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Makurat A, Barton N, Tunbridge L, Vik G (1990) The measurement of the mechanical and hydraulic properties of rock joints at different scales in the Stripa project. In: Stephansson O, Barton N (eds) Proc. Int. Symp. on Rock Joints, Loen, Norway., Balkema, Rotterdam, pp 541–548

  • Martin CD (2007) Quantifying in situ stress magnitudes and orientations for Forsmark: Forsmark stage 2.2. SKB R-07-26, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Martin CD, Chandler NA (1993) Stress heterogeneity and geological structures. Int J Rock Mech Min Sci Geomech Abstr 30(7):993–999. doi:10.1016/0148-9062(93)90059-M

    Article  Google Scholar 

  • Martin CD, Stimpson B (1994) The effect of sample disturbance on laboratory properties of Lac du Bonnet granite. Can Geotechn J 31(5):692–702. doi:10.1139/t94-091

    Article  Google Scholar 

  • Martin CD, Read RS, Chandler NA (1990) Does scale influence in situ stress measurements? Some findings at the Underground Research Laboratory. In: da Cunha AP (ed) Proc 1st Int Workshop on Scale Effects in Rock Masses, Loen, Norway. Balkema, Rotterdam, The Netherlands, pp 307–316

    Google Scholar 

  • Mas Ivars D, Hakami H (2005) Effect of a sub-horizontal fracture zone and rock mass heterogeneity on the stress field in Forsmark area: a numerical study using 3DEC—preliminary site description Forsmark area, version 1.2. SKB R-05-59, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Mattila J, Tammisto E (2012) Stress-controlled fluid flow in fractures at the site of a potential nuclear waste repository, Finland. Geology 40(4):299–302. doi:10.1130/G32832.1

    Article  Google Scholar 

  • NRC (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • OECD-NEA (1993) Palaeo-hydrogeological methods and their application. Technical summary and proceedings of a NEA Workshop, Paris, 9–10 November 1992, Co-ordinating Group on Site Evaluation and Design of Experiments for Radioactive Waste Disposal (SEDE); Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris

  • Öhberg A (2006) Investigation methods and equipment used by Posiva. Posiva technical report WR 2006–81, Posiva, Eurajoki, Finland

    Google Scholar 

  • Öhman J, Niemi A, Tsang C-F (2005) Probabilistic estimation of fracture transmissivity from wellbore hydraulic data accounting for depth-dependent anisotropic rock stress. Int J Rock Mech Min Sci 42:793–804. doi:10.1016/j.ijrmms.2005.03.016

    Article  Google Scholar 

  • Olsson R (1988) Mechanical and hydro-mechanical behaviour of hard rock joints: a laboratory study. PhD Thesis, Chalmers University of Technology, Göteborg, Sweden

    Google Scholar 

  • Posiva (2009) Olkiluoto site description 2008. Report 2009–01, Posiva, Eurajoki, Finland

    Google Scholar 

  • Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37(1–2):245–262. doi:10.1016/S1365-1609(99)00104-5

    Article  Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22(4):251–261. doi:10.1016/0148-9062(85)92952-3

    Article  Google Scholar 

  • Saintot A, Stephens MB, Viola G, Nordgulen Ø (2011) Brittle tectonic evolution and paleostress reconstruction in the south-western part of the Fennoscandian Shield, Forsmark, Sweden. Tectonics 30(4), TC4002. doi:10.1029/2010TC002781

    Article  Google Scholar 

  • Selroos J-O, Follin S (2013) Overview of hydrogeological site-descriptive modeling conducted for the proposed high-level nuclear waste repository site at Forsmark. doi:10040_10.1007/s10040-013-1077-x

  • Sjöberg J, Lindfors U, Perman F, Ask D (2005) Evaluation of the state of stress at the Forsmark site: preliminary site investigation Forsmark area, version 1.2. SKB R-05-35, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • SKB (2001) Site investigations: investigation methods and general execution programme. SKB TR-01-29, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • SKB (2008) Site description of Forsmark at completion of the site investigation phase: SDM-site Forsmark. SKB TR-08-05, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • SKB (2009) Site description of Laxemar at completion of the site investigation phase: SDM-site Laxemar. SKB TR-09-01, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Söderbäck B (ed) (2008) Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas: site descriptive modelling SDM-site. SKB R-08-19, Svensk Kärnbränslehantering AB, Stockholm

  • Stephansson O, Zang A (2012) ISRM suggested methods for rock stress estimation, part 5: establishing a model for the in situ stress at a given site. Rock Mech Rock Eng 45(6):955–969. doi:10.1007/s00603-012-0270-x

    Article  Google Scholar 

  • Stephansson O, Dahlström L-O, Bergström K, Myrvang A, Fjeld OK, Hanssen TH, Särkkä P, Väätäinen A (1987) Fennoscandian Rock Stress Data Base - FRSDB. Research report 1987:06. Luleå University of Technology, Luleå, Sweden

    Google Scholar 

  • Stephansson O, Ljunggren C, Jing L (1991) Stress measurements and tectonic implications for Fennoscandia. Tectonophysics 189(1–4):317–322. doi:10.1016/0040-1951(91)90504-L

    Article  Google Scholar 

  • Stephens MB, Fox A, La Pointe P, Simeonov A, Isaksson H, Hermanson J, Öhman J (2007) Site descriptive modelling: Forsmark stage 2.2—geology. SKB R-07-45, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Ström A, Andersson J, Skagius K, Winberg A (2008) Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden. Appl Geochem 23(7):1747–1760. doi:10.1016/j.apgeochem.2008.02.014

    Article  Google Scholar 

  • Winberg A (2010) Säkerhetsrelaterade platsegenskaper: en relativ jämförelse av Forsmark med referensområden [Safety-related siting factors: a relative comparison of Forsmark with reference areas]. SKB R-10-63, Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  • Yeo IW, de Freitas MH, Zimmerman RW (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35:1051–1070. doi:10.1016/S0148-9062(98)00165-X

    Article  Google Scholar 

  • Zou L, Tarasov BG, Dyskin AV, Adhikary DP, Pasternak E, Xu W (2013) Physical modelling of stress-dependent permeability in fractured rocks. Rock Mech Rock Eng 46(1):67–81. doi:10.1007/s00603-012-0254-x

    Article  Google Scholar 

Download references

Acknowledgements

This report was made possible due to the significant field work conducted on behalf of the Svensk Kärnbränslehantering AB (SKB) during the site investigation for a geological repository for spent high-level nuclear waste at the Forsmark site. We would like to thank those who contributed to the extensive data collection and/or analysis including: M. Stephens, A. Simeonov, J. Petersson, J. Levén, I. Rhén, L. Hartley, D. Martin and R. Christiansson. Finally, we would like to thank the reviewers for their helpful comments and suggestions, which improved the quality of the manuscript. A special thanks is given to M. Becker, who suggested focusing on the possible correlation between the calculated transmissivity values of deterministic deformation zones and in situ stress. All SKB reports referred to in this report, as well as the underlying data reports, can be downloaded from the SKB website—http://www.skb.se/; click on “Publications”, and then enter the report number, e.g. “R-07-45”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Follin.

Additional information

This article belongs to a series describing site-descriptive modeling of bedrock hydrogeology for the proposed high-level nuclear waste repository site at Forsmark, Sweden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follin, S., Stigsson, M. A transmissivity model for deformation zones in fractured crystalline rock and its possible correlation to in situ stress at the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22, 299–311 (2014). https://doi.org/10.1007/s10040-013-1078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1078-9

Keywords

Navigation