Advertisement

Hydrogeology Journal

, Volume 22, Issue 1, pp 25–45 | Cite as

Self-organizing thermal fluid flow in fractured crystalline rock: a geochemical and theoretical approach to evaluating fluid flow in the southern Idaho batholith, USA

  • Alan L. Mayo
  • Scott A. Himes
  • David G. Tingey
Paper

Abstract

Thermal springs in the Idaho batholith (USA) discharge at discrete locations along a 50+ km reach of the Middle Fork of the Boise River (MFBR). Recharge water flows through Basin and Range extension fractures where it is heated by the geothermal gradient and ultimately discharges from the damage zone of the trans-Challis faults located near the bottom of the MFBR. Stable isotopes of water, 14C groundwater ages, fracture and fault orientations, fracture volume changes due to chemical evolution, and recharge area calculations suggest that the thermal springs issue from individual hydrothermal systems and that they are self-organizing. Water evolves chemically along flow paths, dissolving feldspars and precipitating secondary minerals. Secondary minerals accumulate in less-efficient fractures and are flushed from the more efficient ones. Flow-area calculations using heat-flow, exponential decay-of-porosity, and curve-intersection methods show that many of the thermal systems extend beyond their immediate topographic watershed, and that some capture water from adjacent watersheds. Geochemical/flow feedback loops that provide a mechanism for self-organization are modeled using PHREEQC, and positive and negative fracture volume changes are calculated. Criteria for identifying self-organizing granitoid thermal groundwater systems are suggested.

Keywords

Fracture flow USA Hydrothermal groundwater capture zone Crystalline rock Thermal conditions 

Auto-structuration de l’écoulement thermal fluide dans une roche cristalline fracturée : une approche géochimique et théorique pour évaluer l’écoulement de fluides dans le batholite Sud de l’Idaho, Etats Unis d’Amérique

Résumé

Les sources thermales du batholite de l’Idaho (USA) sont localisées le long de la rivière de la Middle Fork of the Boise (RMFB) sur 50 km. L’eau de recharge s’écoule à travers des fractures du bassin et de la chaîne montagneuse où elle acquière sa température du fait du gradient géothermique et émerge finalement de la zone fracturée des failles de trans-Challis localisée près du lit de la rivière (RMFB). L’utilisation des isotopes stables de l’eau, la détermination des âges de l’eau souterraine à l’aide du 14C, les orientations des failles et fractures, les changements de volume de fracturation dus à l’évolution chimique, et les calculs d’aire de recharge suggèrent que les sources thermales sont issues de systèmes hydrothermaux particuliers structurée de façon indépendante. L’eau évolue chimiquement le long des chenaux d’écoulement, dissolvant les feldspaths et précipitant des minéraux secondaires. Les minéraux secondaires s’accumulent dans les fractures moins actives et sont expulsés des plus actives. Les calculs de l’aire de circulation en utilisant le flux thermique, la décroissance exponentielle de la porosité et des méthodes d’intersection des courbes montrent que plusieurs systèmes thermaux s’étendant au delà de leurs lignes de partage des eaux topographiques immédiate, et que certains systèmes capturent l’eau de bassins versants adjacents. Les boucles de rétroaction constituant un mécanisme d’auto-structuration sont modélisés en utilisant PHREEQC, et les variations de volume positives et négatives des fractures sont calculées. Des critères pour identifier le mécanisme d’auto-structuration thermale des systèmes aquifères des granitoïdes sont suggérés.

Flujo de un fluido termal autoorganizado en roca cristalina fracturada: un enfoque geoquímico y teórico para evaluar el flujo de fluidos en el sur del batolito Idaho, EE.UU

Resumen

Los manantiales termales en el batolito de Idaho (EEUU) descargan en posiciones puntuales a lo largo de una distancia de más de 50 km en el Middle Fork del Río Boise (MFBR). El agua de recarga fluye a través de las fracturas de extensión de la cuenca y cordones donde es calentada por el gradiente geotérmico y por último descarga desde la zona de afectada de la falla de trans-Challis situada cerca de la base del MFBR. Los cálculos de isótopos estable del agua, edades de agua subterránea por 14C, orientaciones de fallas y fracturas, cambios del volumen de fractura debido a la evolución química, y área de recarga sugieren que el tema de los manantiales termales proviene de sistemas hidrotermales individuales y que ellos están autoorganizados. El agua evoluciona químicamente a lo largo de las trayectorias de flujo, disolviendo los feldespatos y precipitando minerales secundarios. Los minerales secundarios se acumulan en las fracturas menos eficientes y son barridos de las fracturas más eficientes. Los cálculos del área de flujo usando el método de flujo del calor, decaimiento exponencial de la porosidad, y de las curvas de intersección muestran que muchos de los sistemas termales se extienden más allá de su cuenca topográfica principal, y que algunos capturan agua proveniente de cuencas adyacentes. Se modelaron los circuitos de retroalimentación geoquímica y de flujo que proporcionan una mecanismo para la autoorganización usando PHREEQC, y se calcularon los cambios de volúmenes de fracturas positivos o negativos. Se sugieren criterios para identificar los sistemas granitoides autoorganizados de agua subterránea termal.

断裂结晶岩中自组式热流体流动:美国爱达荷州南部岩基中流体流动评价的地化和理论方法

摘要

美国爱达荷州岩基中热泉排泄到沿博弈西河中段50公里的区域内。补给水通过盆地和山脉断裂流动,由于地热梯度缘故,补给水在此受热,最终从位于博弈西河中段附近的跨Challis 断层损伤带排泄。水中的稳定同位素、地下水 碳14年龄、断裂和断层的走向、化学演化导致的断裂体积变化及补给区计算结果显示,热泉发源于单个的自组式水热系统。水化学上沿水流通道演化,溶解长石和沉淀的次生矿物。次生矿物在低效率的断裂中积累,并被冲到高效率的断裂中。用热流、孔隙度指数式衰减和曲线交会法得到的水流区计算结果显示,许多热系统延伸到毗邻的流域之外,有些热系统从邻近的流域获获取水。采用PHREEQC模拟了可以提供自组机理的地球化学/水流反馈回路。并计算了断裂体积正负变化。提出了确定自组式花岗岩类岩石地热地下水系统的标准。

Auto-organização térmica do fluxo de fluidos em rochas cristalinas fraturadas: uma aproximação geoquímica e teórica para avaliação do fluxo de fluidos no batólito do sul de Idaho, EUA

Resumo

Nascentes termais no batólito de Idaho (EUA) descarregam em locais discretos ao longo de um trecho de mais de 50 km do Middle Fork do Rio Boise (MFBR). A água de recarga flui através da Bacia e de uma gama extensa de fraturas, onde é aquecida pelo gradiente geotérmico e finalmente descarregada na zona de esmagamento das falhas trans-Challis localizadas próximo da base do MFBR. Os isótopos estáveis da água, as idades 14C da água subterrânea, as orientações das fraturas e falhas, as alterações dos volumes das fraturas devido à evolução química, e os cálculos da área de recarga sugerem que as nascentes termais surgem a partir de sistemas hidrotermais individuais e que estes são auto-organizados. A água evolui quimicamente ao longo de linhas de fluxo, dissolvendo feldspatos e precipitando minerais secundários. Os minerais secundários acumulam-se em fraturas menos eficientes e são arrastados das fraturas mais eficientes. Cálculos de áreas de fluxo usando fluxo de calor, decaimento exponencial da porosidade e métodos de interseção de curvas, mostram que muitos dos sistemas termais se estendem muito para além da sua bacia topográfica imediata, e que alguns capturam água em bacias adjacentes. Ciclos de regeneração geoquímica/fluxo, os quais providenciam um mecanismo para a auto-organização, são modelados através do uso do PHREEQC, e são calculadas alterações positivas e negativas no volume das fraturas. São sugeridos critérios para identificação de sistemas termais de água subterrânea auto-organizados em granitóides.

Notes

Acknowledgements

We would like to express our appreciation to David Nelson who assisted in the early stages of the research and to Stephen T. Nelson and Barry Bickmore who critically reviewed portions of the work. The research was partially funded by the Brigham Young University Laboratory of Isotope Geochemistry.

References

  1. Armstrong RL, Taubeneck WH, Hales PO (1977) Rb-Sr and K-Ar geochronometry of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and Idaho. Geol Soc Am Bull 88:397–411CrossRefGoogle Scholar
  2. Ashby WR (1962) Principles of the self-organizing system. In: Von Foerster H, Zopf GW Jr (eds) Principles of self-organization: transactions of the University of Illinois Symposium. Pergamon, London, pp 255–278Google Scholar
  3. Athy LF (1930) Density, porosity and compaction of sedimentary rocks. Am Assoc Petrol Geol Bull 14(1):1–24Google Scholar
  4. Azaroual M, Fouillac C (1997) Experimental study and modeling of granite-distilled water interactions at 180 °C and 14 bars. Appl Geochem 12:55–73CrossRefGoogle Scholar
  5. Barthelmy D (2010) The mineralogy database: http://webmineral.com. Accessed 9 Feb 2012
  6. Bennett EH (1980) Reconnaissance geology and geochemistry of the Trinity Mountain-Steel Mountain area Elmore County, Idaho. Ida Geol Surv Tech Rep 80–11:56Google Scholar
  7. Bennett EH (1986) Relationship of the trans-Challis fault system in central Idaho to Eocene Basin and Range extensions. Geology 14:481–484CrossRefGoogle Scholar
  8. Bennett EH, Knowles CR (1985) Tertiary plutons and related rocks in central Idaho. In: McIntyre DH (ed) Symposium on the Geology and Mineral Deposits of the Challis 1 × 2 Degree Quadrangle, Idaho. US Geol Surv Bull 1658 A-S, chap F, pp 81–95Google Scholar
  9. Black JH (1987) Flow and flow mechanisms in crystalline rock. Geol Soc Lond Spec Publ 34:195–200CrossRefGoogle Scholar
  10. Bons PD, Arnold J (2003) Accumulation and self-organization in hydrofracture transport of fluids. J Geochem Explor 78–79:667–670CrossRefGoogle Scholar
  11. Brott CA, Blackwell DD, Ziagos JP (1981) Thermal and tectonic implications of heat flow in the eastern Snake River Plain, Idaho. J Geophys Res 86:11,709–11,734CrossRefGoogle Scholar
  12. Bruthans J, Zeman O, Vojtechovska A (2006) Extent of groundwater flow area: estimation from spring yield and terrestrial heat flow. Acta Univ Carol Geol 48(1–4):67–70Google Scholar
  13. Charles RW, Bayhurst GK (1983) Rock-fluid interactions in a temperature gradient: Biotite Granodiorite + H2O. J Volcanol Geotherm Res 15:137–166CrossRefGoogle Scholar
  14. Clayton JL (1974) Clay mineralogy of soils in the Idaho batholith. Geol Soc Am Bull 85:229–232CrossRefGoogle Scholar
  15. Clayton JL (1988) Some observations on the stoichiometry of feldspar hydrolysis in granitic soil. J Environ Qual 17(1):153–157CrossRefGoogle Scholar
  16. Clayton JL, Megahan WF, Hampton D (1979) Soil and bedrock properties: weathering and alteration products and processes in the Idaho batholith. USDA For Serv Res Pap INT-237:35Google Scholar
  17. Criss RE, Taylor HP Jr (1983) An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith. Geol Soc Am Bull 94(5):640–663CrossRefGoogle Scholar
  18. Dolejš D, Wagner T (2008) Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si–Al–Fe–Mg–Ca–Na–K–H–O–Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks. Geochim Cosmochim Acta 72:526–553CrossRefGoogle Scholar
  19. Domenico PA, Swartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York, 506 ppGoogle Scholar
  20. Druchsel GK, Rosenberg PE (2001) Non-magmatic fracture-controlled hydrothermal systems in the Idaho batholith: South Fork Payette geothermal system. Chem Geol 173:271–291Google Scholar
  21. Eberl DD (2003) User’s guide to RockJock: a program for determining quantitative mineralogy from powder X-ray diffraction data, revised November 30, 2009. US Geol Surv Open File Rep 03–78, 48 ppGoogle Scholar
  22. Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19(11):1393–1404CrossRefGoogle Scholar
  23. Ferguson G, Grasby SE (2011) Thermal springs and heat flow in North America. Geofluids 11:294–301CrossRefGoogle Scholar
  24. Forster C, Smith L (1988) Groundwater flow systems in mountainous terrain: 1. numerical modeling technique. Water Resour Res 24(7):999–1010CrossRefGoogle Scholar
  25. Forster C, Smith L (1989) The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J Geophys Res 94(B7):9439–9451CrossRefGoogle Scholar
  26. Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50CrossRefGoogle Scholar
  27. Hoffman BA (2008) Scale and heterogeneity in hydraulic properties of the fractured granitic Boise Front, Boise Idaho. Unpublished Master’s Thesis, Boise State University, Boise, ID, USAGoogle Scholar
  28. Holdaway BK (1994) The geochemical evolution of cold and thermal ground waters in the southern part of the Idaho batholith. Unpublished Master’s Thesis, Brigham Young University, Provo, UT, USAGoogle Scholar
  29. Hyndman DW, Talbot JL (1979) The Idaho batholith and related subduction complex. Field guide no. 4, Geological Society of America 72nd Annual Meeting, Cordilleran Section, GSA, Boulder, CO,16 ppGoogle Scholar
  30. IAH (2007) Groundwater in fractured rocks, vol 9. In: Krásný J, Sharp JM (eds) International Association of Hydrogeologist Selected Paper Series, IAH, Goring, UK, 648 ppGoogle Scholar
  31. IDWR (2011) Idaho Department of Water Resources, Idaho Geographic Information. http://www.idwr.idaho.gov/GeographicInfo/GISdata/gis_data.htm. Accessed 15 May 2011
  32. Illman WA (2006) Strong field evidence of directional permeability scale effect in fractured rock. J Hydrol 319:227–236CrossRefGoogle Scholar
  33. International Heat Flow Commission (2012) Global heat flow database. http://www.geophysik.rwth-aachen.de/IHFC/. Accessed 15 May 2012
  34. Kiilsgaard TH, Lewis RS (1985) Plutonic rocks of Cretaceous age and faults in the Atlanta lobe of the Idaho batholith, Challis Quadrangle, chapter B. In: McIntyre DH (ed) Symposium on the Geology and Mineral Deposits of the Challis 1˚ × 2˚ Quadrangle, Idaho. US Geol Surv Bull 1658 A-S, pp 29–42Google Scholar
  35. Kiilsgaard TH, Fisher FS, Bennett EH (1986) The trans-Challis fault system and associated precious metal deposits, Idaho. Econ Geol 81:721–724CrossRefGoogle Scholar
  36. Kiilsgaard TH, Stanford LR, Lewis RS (2001) Map of the Idaho City 30 × 60 minute quadrangle, Idaho. USGS map scale 1:100,000, 1 sheet, US Geological Survey, Reston, VAGoogle Scholar
  37. Lewis RE, Young HW (1982) Thermal springs in the Boise River basin, south-central Idaho. US Geol Surv Water Resour Invest Rep 82–4006:22Google Scholar
  38. Mariner RH, Evans CE, Young HW (2006) Comparison of circulation times of thermal waters discharging from the Idaho batholith based on geothermometer temperatures, helium concentrations, and 14C measurements. Geothermics 35:3–25CrossRefGoogle Scholar
  39. Mayo AL, Bruthans, J, Himes S (2012) Using heat flow and radiocarbon ages to calculate the recharge zone of thermal groundwater systems in granitoid rocks. International Conference on Groundwater in Fractured Rocks, International Association of Hydrogeologists, Prague, Czech Republic, May 21–24, 2012Google Scholar
  40. Moore DE, Morrow CA, Byerlee JD (1983) Chemical reactions accompanying fluid flow through granite held in a temperature gradient. Geochim Cosmochim Acta 47:445–453CrossRefGoogle Scholar
  41. National Earthquake Information Center (2012) USGS Earthquake Hazards Program. http://earthquake.usgs.gov/regional/neic/. Accessed 15 May 2012
  42. Norton D, Knapp R (1977) Transport phenomena in hydrothermal systems: the nature of porosity. Am J Sci 277:913–936CrossRefGoogle Scholar
  43. NRC (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Research Council, National Academy Press, Washington, DC, 551 ppGoogle Scholar
  44. O’Hara KD (1994) Fluid-rock interaction in crustal shear zones: a directed percolation approach. Geology 22:843–846CrossRefGoogle Scholar
  45. Ortoleva P, Merino E, Moore C, Chadam J (1987) Geochemical self-organization I: reaction-transport feedbacks and modeling approach. Am J Sci 287:979–1007CrossRefGoogle Scholar
  46. Parkhurst DL, Appelo CA (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259, 326 ppGoogle Scholar
  47. Pennington WB, Smith RB, Trimble AB (1974) A microearthquake survey of parts of the Snake River Plain and central Idaho. Bull Seismol Soc Am 64(2):307–312Google Scholar
  48. Renard F, Gratier JP, Ortoleva P, Brosse E, Bazin B (1998) Self-organization during reactive fluid flow in a porous medium. Geophys Res Lett 25(3):385–388CrossRefGoogle Scholar
  49. Savage D (1986) Granite-water interactions at 100 °C, 50 MPa: an experimental study. Chem Geol 54:81–95CrossRefGoogle Scholar
  50. Savage D, Cave MR, Milodowski AE, George I (1987) Hydrothermal alteration of granite by meteoric fluid: an example from the Carnmenellis Granite, United Kingdom. Contrib Mineral Petrol 96:391–405CrossRefGoogle Scholar
  51. Schlegel ME, Mayo AL, Nelson S, Henderson R, Eggett D (2009) Paleo-climate of the Boise area, Idaho from the last glacial maximum to the present based on groundwater δ2H and δ18O compositions. Quat Res 71:172–180CrossRefGoogle Scholar
  52. Shvartsev SL (2012) Internal evolution of the water–rock system: nature and mechanisms. Earth Sci Res 1(2):106–116CrossRefGoogle Scholar
  53. Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer, New York, 408 pCrossRefGoogle Scholar
  54. Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1: the terrestrial environment. Elsevier, Amsterdam, pp 179–226Google Scholar
  55. van der Kamp G, Bachu S (1989) Use of dimensional analysis in the study of thermal effects of various hydrogeological regimes. In: Beck AE, Garven G, Stegna L (eds) Hydrogeological regimes and their subsurface thermal effects. Geophysical monograph 47, vol 2. International Union of Geodesy and Geophysics, American Geophysical Union, Washington, DC, pp 23–28CrossRefGoogle Scholar
  56. von Foerster H (1960) On self-organizing systems and their environments. In: Yovits MC, Camerons S (eds) Self-organizing system. Pergamon Press, London, pp 31–50Google Scholar
  57. USGS Water Resources (2012) Current conditions for Idaho: streamflow. USGS Water Resources.http://waterdata.usgs.gov/id/nwis/current/?type=flow. Accessed 15 May 2012
  58. Wood SH, Wurts C, Lane T, Ballenger N, Shaleen M, Totorica D (1985) The Borah Peak, Idaho earthquake of October 28, 1983: hydrologic effects. Earthquake Spectra 2(1):127–150CrossRefGoogle Scholar
  59. Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336CrossRefGoogle Scholar
  60. Young HW (1985) Geochemistry and hydrology of thermal springs in the Idaho batholith and adjacent areas, central Idaho. USGS Water Resour Invest Rep 85–4172, 49 ppGoogle Scholar
  61. Zimmer MA, Rosenberg PE (1997) A conceptual model for hydrothermal convection in the western Atlanta lobe of the Idaho batholith. Geological Society of America Abstracts with Programs, vol 29, no. 6, GSA, Boulder, CO, 333 ppGoogle Scholar
  62. Zuddas P, Seimbille F, Michard G (1995) Granite-fluid interaction at near-equilibrium conditions: experimental and theoretical constraints from Sr contents and isotopic ratios. Chem Geol 21:145–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alan L. Mayo
    • 1
  • Scott A. Himes
    • 1
  • David G. Tingey
    • 1
  1. 1.Department of GeosciencesBrigham Young UniversityProvoUSA

Personalised recommendations