Skip to main content

Advertisement

Log in

The geothermal potential of the basal clastics of Saskatchewan, Canada

Le potentiel géothermique des formations détritiques basales de Saskatchewan, Canada

El potencial geotermal del clástico basal de Saskatchewan, Canadá

O potencial geotérmico dos sedimentos clásticos basais de Saskatchewan, Canadá

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Winnipeg and Deadwood formations form deep clastic reservoirs in Saskatchewan, Canada, with temperatures exceeding 40 °C over most of southern Saskatchewan and reaching 100 °C in southwestern Saskatchewan. At these temperatures, the formations have geothermal potential for development of direct use and electricity generation systems. Numerous disposal wells operating at rates of 30 L/s or more are currently installed in these formations, suggesting that electricity could be generated at rates exceeding 2 megawatts of electrical output (MWe) from individual wells. These basal clastic units, thus, could provide significant energy supply over a broad region of Saskatchewan.

Résumé

Les formations Winnipeg et Deadwood constituent des réservoirs détritiques profonds dans le Saskatchewan au Canada, avec des températures dépassant les 40 °C sur la plus grande partie du Sud du Saskatchewan et atteignant 100 °C dans le Sud-Ouest du Saskatchewan. A ces températures les formations ont un potentiel géothermique pour le développement d’usage direct et de systèmes de générateurs d’électricité. De nombreux forages exploités à des débits de 30 L/s ou plus sont à présent creusés dans ces formations, suggérant que la puissance électrique produite pourrait dépassant 2 mégawatts (MWe) à partir de puits individuels. Ces formations détritiques basales pourraient ainsi fournir un approvisionnement en énergie électrique significatif sur une vaste région du Saskatchewan.

Resumen

Las formaciones Winnipeg y Deadwood forman reservorios clásticos profundos en Saskatchewan, Canadá, con temperaturas que exceden 40 °C sobre la mayor parte del sur de Saskatchewan y alcanzan 100 °C en el sudoeste de Saskatchewan. A estas temperaturas las formaciones tienen un potencial geotermal para desarrollar uso directo y sistemas de generación eléctrica. Numerosos pozos residuales que operan en caudales de 30 L/s ó más están actualmente instalados en estas formaciones, sugiriendo que la electricidad podría ser generada a ritmos que exceden los 2 Megawatios de salida eléctrica (MWe) a partir de pozos individuales. Estas unidades clásticas basales así podrían proveer un abastecimiento significativo de energía sobre una amplia región de Saskatchewan.

Resumo

As formações de Winnipeg e Deadwood formam reservatórios clásticos profundos em Saskatchewan, no Canadá, com temperaturas que excedem os 40 °C em quase todo o sul de Saskatchewan e atingem os 100 °C no sudoeste de Saskatchewan. A estas temperaturas, as formações têm um potencial geotermal para o desenvolvimento do uso direto e de sistemas de geração de eletricidade. Numerosos furos operando a taxas de 30 L/s ou mais estão atualmente instalados nestas formações, sugerindo que eletricidade poderia ser gerada a taxas excedendo 2 megawatts de saída elétrica (MWe) em furos individuais. Estas camadas clásticas basais poderiam então providenciar uma produção energética significativa para uma região abrangente de Saskatchewan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bachu S (1993) Basement heat flow in the Western Canada Sedimentary Basin. Tectonophysics 222(1):119–133. doi:10.1016/0040-1951(93)90194-O

    Article  Google Scholar 

  • Bachu S, Burwash RA (1991) Regional-scale analysis of the geothermal regime in the Western Canada Sedimentary Basin. Geothermics 20(5–6):387–407. doi:10.1016/0375-6505(91)90028-T

    Article  Google Scholar 

  • Baihly J, Altman R, Malpani R et al (2010) Shale gas production decline trend comparison over time and basins. SPE Annual Technical Conference and Exhibition. 135555–MS, SPE, Florence, Italy, pp 1–25

  • Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sust Energ Rev 6(1–2):3–65. doi:10.1016/S1364-0321(02)00002-3

    Article  Google Scholar 

  • Carlson CG (1958) The stratigraphy of the Deadwood-Winnipeg interval in North Dakota and northwestern South Dakota. Second Willist, Basin Symp, pp 20–26

  • Clauser C, Huenges E (1992) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. AGU, Washington, DC

  • Duffield WA, Sass JH (2003) Geothermal energy: clean power from the Earth’s heat. US Geol Surv Circul 1249

  • IHS Energy (2012) IHS Accumap. Commercial database. IHS Energy, Englewood, CO

  • Ferguson G, Grasby SE (2011) Thermal springs and heat flow in North America. Geofluids 11(3):294–301. doi:10.1111/j.1468-8123.2011.00339.x

    Article  Google Scholar 

  • Ferguson G, Betcher RN, Grasby SE (2007) Hydrogeology of the Winnipeg Formation in Manitoba, Canada. Hydrogeol J 15(3):573–587. doi:10.1007/s10040-006-0130-4

    Article  Google Scholar 

  • Gallup DL (2009) Production engineering in geothermal technology: a review. Geothermics 38(3):326–334. doi:10.1016/j.geothermics.2009.03.001

    Article  Google Scholar 

  • Giardini D (2009) Geothermal quake risks must be faced. Nature 462(7275):848–9. doi:10.1038/462848a

    Article  Google Scholar 

  • Goldstein B, Hiriart G, Tester J et al (2011) Great expectations for geothermal energy to 2100: messages for now. GRCTrans 35:1175–1183

    Google Scholar 

  • Gosnold WD, Majorowicz J, Klenner R et al (2011) Implications of post-glacial warming for Northern Hemisphere heat flow. GRC Trans 35:795–799

    Google Scholar 

  • Gringarten AC, Sauty JP (1975) A theoretical study of heat extraction from aquifers with uniform regional flow. J Geophys Res 80(35):4956–4962

    Article  Google Scholar 

  • Han G, Dusseault MB (2003) Description of fluid flow around a wellbore with stress-dependent porosity and permeability. J Petrol Sci Eng 40(1–2):1–16. doi:10.1016/S0920-4105(03)00047-0

    Article  Google Scholar 

  • Holt RM (1990) Permeability reduction induced by a nonhydrostatic stress field. SPE Form Eval 5(4):444–448

    Google Scholar 

  • Hutchence K, Weston JH, Law AG et al (1986) Modeling of a liquid phase geothermal doublet system at Regina, Saskatchewan, Canada. Water Resour Res 22(10):1469. doi:10.1029/WR022i010p01469

    Article  Google Scholar 

  • IEA (2011) Technology roadmap geothermal heat and power. IEA, Paris, France, 52 pp

  • Kreis LK, Haidl FM, Nimegeers AR et al (2004) Lower Paleozoic map series: Saskatchewan. SaskatchewanIndustry and Resources, Regina, SK, 56 pp

  • Lopez S, Hamm V, Le M et al (2010) Geothermics 40 years of Dogger aquifer management in Ile-de-France, Paris Basin, France. Geothermics 39(4):339–356. doi:10.1016/j.geothermics.2010.09.005

    Article  Google Scholar 

  • Majorowicz JA, Grasby SE (2010) Heat flow, depth: temperature variations and stored thermal energy for enhanced geothermal systems in Canada. J Geophys Eng 7(3):232–241. doi:10.1088/1742-2132/7/3/002

    Article  Google Scholar 

  • Majorowicz JA, Jessop AM (1981) Regional heat flow patterns in the Western Canadian Sedimentary Basin. Tectonophysics 74:209–238

    Article  Google Scholar 

  • Majorowicz JA, Jones FW (1986) Geothermics of the Williston basin in Canada in relation to hydrodynamics and hydrocarbon occurrences. Geophysics 51(3):767–779

    Article  Google Scholar 

  • MDH (2008) Project proposal for Belle Plaine expansion. 125 pp.

  • Melnik A, Lengyel T, Roston B et al (2011) Saskatchewan Phanerozoic fluids and petroleum systems assessment: hydrogeology and geothermics update. 14 pp

  • Milenić D, Vasiljević P, Vranješ A (2010) Criteria for use of groundwater as renewable energy source in geothermal heat pump systems for building heating/cooling purposes. Energ Buildings 42(5):649–657. doi:10.1016/j.enbuild.2009.11.002

    Article  Google Scholar 

  • Norford BS, Haidl FM, Besyz RK, et al (1994) Middle Ordovician to Lower Devonian strata of the Western Canada Sedimentary Basin. In: Geological atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists/Alberta Research Council, Calgary, AB, pp 109–127

  • Paterson DF (1971) The stratigraphy of the Winnipeg Formation (Ordovician) of Saskatchewan. Saskatchewan Dept. of Mineral Resources Geological Report 140, Gov. of Saskatchewan, Regina, SK, 57 pp

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267. doi:10.1029/93RG01249

    Article  Google Scholar 

  • Regenspurg S, Wiersberg T, Brandt W et al (2010) Geochemical properties of saline geothermal fluids from the in-situ geothermal laboratory Groß Schönebeck (Germany). Chem Erde Geochem 70(Suppl 3):3–12. doi:10.1016/j.chemer.2010.05.002

    Article  Google Scholar 

  • Ruse DC (2008) Review of disposal well expansion at Mosaic Belle Plaine solution mine. Report, Saskatchewan Ministry of Energy Resources, Regina, SK, 9 pp

  • Saskatchewan Ministry of Energy Resources (2011) Stratigraphic correlation chart. Saskatchewan Ministry of Energy Resources, Regina, SK. http://www.er.gov.sk.ca/stratchart.Accessed. Accessed 26 Jan 2013

  • Schuthjens PMTM, Hanssen TH, Hettema MHH et al (2004) Compaction-induced porosity/permeability reduction in sandstone reservoirs: data and model for elasticity-dominated deformation. SPE Reserv Eval Eng 7(3):202–216

    Google Scholar 

  • Slind OL, Andrews GD, Murray DL et al (1994) Middle Cambrian to Lower Ordovician strata of the Western Canada Sedimentary Basin. In: Mossop GD, Shetsen I (eds) Geological atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists/Alberta Research Council, Calgary, AB, pp 87–108

  • Smith L, Chapman DS (1983) On the thermal effects of groundwater flow: 1. regional scale systems. J Geophys Res 88(B1):593. doi:10.1029/JB088iB01p00593

    Article  Google Scholar 

  • Tester JW, Anderson BJ, Batchelor AS et al (2006) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology, Boston, MA, 372 pp

  • Ungemach P (2003) Reinjection of cooled geothermal brines into sandstone reservoirs. Geothermics 32(4–6):743–761. doi:10.1016/S0375-6505(03)00074-9

    Article  Google Scholar 

  • US Deparment of Energy (2010) Low-temperature, coproduced, and geopressured geothermal technologies strategic action plan. USDE, Washington, DC

  • Vigrass LW (1971) Depositional framework of the Winnipeg Formation in Manitoba and eastern Saskatchewan. In: Geological Association of Canada Special Paper no. 9, GAC, St. John’s, NL, pp 225–234

  • Vigrass LW, Jessop AM, Brunskill B (2007) Regina geothermal project. In: Summary of investigations. Saskatchewan Geological Survey, Regina, SK, p A–2

Download references

Acknowledgements

This research was funded by a Discovery Grant from the National Sciences and Engineering Research Council of Canada to G. Ferguson. The authors are grateful to Peter Bayer, Inga Moeck and one anonymous reviewer for insightful reviews that substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant Ferguson.

Additional information

Published in the theme issue “Hydrogeology of Shallow Thermal Systems”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, G., Grasby, S.E. The geothermal potential of the basal clastics of Saskatchewan, Canada. Hydrogeol J 22, 143–150 (2014). https://doi.org/10.1007/s10040-013-1061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1061-5

Keywords

Navigation