Advertisement

Hydrogeology Journal

, Volume 21, Issue 8, pp 1803–1820 | Cite as

Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

  • C. R. BernEmail author
  • A. R. Boehlke
  • M. A. Engle
  • N. J. Geboy
  • K. T. Schroeder
  • J. W. Zupancic
Paper

Abstract

Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

Keywords

Salinization USA Sodium adsorption ratio Native salts Waste disposal 

Réponse de la chimie de la nappe superficielle et du sol à 3 ans d’irrigation souterraine au goutte à goutte avec de l’eau produite lors de l’extraction de méthane de charbon

Résumé

L’élimination des eaux produites et pompées jusqu’à la surface lors de l’extraction de méthane de charbon (CBM) constitue un enjeu environnemental important dans la partie du bassin de la rivière Powder appartenant au Wyoming, USA. Les forts Rapports d’Adsorption du Sodium (SAR) des eaux pourraient dégrader les terres agricoles, particulièrement si les eaux sont directement appliquées à la surface du sol. Une méthode d’élimination de l’eau de CBM, tout en en tirant un usage bénéfique, est l’irrigation souterraine au goutte à goutte (SDI), où les eaux de CBM acidifiées sont appliquées à longueur d’année à des champs de luzerne au moyen de tubes enterrés à 0.92 m de profondeur. Les effets de cette méthode ont été étudiés sur une terrasse alluviale avec un niveau piézométrique relativement peu profond (∼3 m). L’excédent d’irrigation entraîne une montée du niveau piézométrique, qui atteint même temporairement la profondeur des tubes de goutte à goutte. Cette montée coïncide avec à une augmentation de la salinité dans certains puits. Trois facteurs paraissent piloter l’augmentation de la salinité des eaux souterraines : (1) les solutés des CBM, concentrés par évapotranspiration; (2) la dissolution du gypse, apparemment augmentée par échange de cation; et (3) la dissolution de sels natifs de Na–Mg–SO4 plus solubles que le gypse. L’irrigation avec de l’eau à SAR élevé (∼24) a augmenté jusqu’à 15 le SAR du sol situé près des tubages de goutte à goutte (mesure sur échantillon de sol porté à saturation en eau et mixé). Pourtant, ce qui est important, le SAR a peu changé à la surface.

Respuesta del agua subterránea somera y de la química del suelo a 3 años de riego subsuperficial por goteo usando agua extraída para el gas metano de mantos de carbón

Abstract

La eliminación de aguas producidas, bombeada a la superficie como parte de la explotación de gas metano de mantos de carbón (CBM), es un tema ambiental significativo en la porción de Wyoming de la cuenca del Río Powder, EEUU. Las altas relaciones de absorción sodio (SAR) de la aguas podrían degradar las tierras agrícolas, especialmente si es aplicado directamente a la superficie del suelo. Un método para eliminar el agua de CBM, mientras que se aprovechan al mismo tiempo sus beneficios, es el riego supsuperficial por goteo (SDI), donde las aguas acidificadas CBM son aplicadas a campos de alfalfa durante todo el año a través de tubos enterrados a 0.92 m de profundidad. Los efectos del método fueron estudiados en una terraza aluvial con una profundidad relativamente somera del nivel freático (∼3 m). Los excesos del agua de riego causaron la elevación del nivel freático, incluso alcanzando temporariamente la profundidad de los tubos de goteo. El ascenso se correspondió con un incremento de la salinidad en algunos pozos. Tres factores aparecieron como forzantes para impulsar el aumento en la salinidad de las aguas subterráneas: (1) solutos CBM, concentrados por evaporación; (2) disolución de yeso, aparentemente enriquecido por intercambio catiónico; y (3) disolución de sales nativas Na–Mg–SO4 más soluble que el yeso. La irrigación con agua de altos valores de SAR (∼24) ha incrementado el SAR de la pasta saturada del suelo hasta 15 veces cerca de los tubos de goteo. Sin embargo, es importante destacar que ha ocurrido poco cambio del SAR en la superficie.

浅层地下水和土壤化学对 采用煤层—甲烷产出水三年滴灌的响应

摘要

产出水的处理、作为煤层甲烷开采的一部分抽到地表是美国Powder河流域Wyoming州境内部分一个重要的环境问题。水的高钠吸收率可以使农业土地退化,特别是在直接应用于地表的情况下。处理煤层甲烷水的一个方法就是采用地下滴灌,酸化的煤层甲烷水通过埋深0.92 m 的 管滴灌常年种植苜蓿的 土地。研究了该方法对水位相对浅(∼3 m )的冲积阶地的影响。过度的灌溉水引起水位上升,甚至临时可 达到滴灌埋管的深度。水位上升与有些井中的增加的盐度相一致。三个因素似乎增加了地下水中的盐度:(1)蒸腾蒸发后的煤层甲烷溶质;(2)石膏溶解,阳离子明显增加石膏溶解;(3)比石膏更容易溶解的本地Na–Mg–SO4盐分的溶解。用高钠吸收率 (∼24) 水灌溉可以 使土壤饱和泥状基质高钠吸收率在滴灌埋管附近增加 到15。尽管钠吸收率变化非常大,但在地表几乎没有变化。

Resposta química do solo e da água subterrânea a 3 anos de rega gota a gota de subsuperfície usando água produzida em camadas de carvão e metano

Resumo

O uso de águas produzidas e bombeadas para a superfície como parte da exploração de camadas de carvão e metano (CBM) é uma questão ambiental significativa na porção de Wyoming da Bacia do Rio Powder, nos EUA. A elevada relação de adsorção de sódio (SAR) das águas poderia degradar o solo agrícola, especialmente se a aplicação fosse feita à superfície do solo. Uma metodologia para utilização das águas CBM, enquanto são aproveitadas para fins úteis, é a rega gota a gota subsuperficial (SDI), onde águas acidificadas CBM são aplicadas em campos de alfafa durante todo o ano através de tubos enterrados a 0.92 m de profundidade. Foram estudados os efeitos da metodologia num terraço aluvial com a água subterrânea a uma profundidade baixa (∼3 m). O excesso de água de rega causou a elevação do nível freático, tendo mesmo temporariamente atingido a profundidade da tubagem gota a gota. Esta subida do nível da água subterrânea correspondeu a um incremento da salinidade nalguns poços. Três fatores parecem incrementar a salinidade das águas subterrâneas: (1) solutos CBM, concentrados por evapotranspiração, (2) dissolução de gesso, aparentemente potenciada por troca catónica; e (3) dissolução de sais nativos Na–Mg–SO4, mais solúveis que o gesso. A rega com água com SAR elevada (∼24) incrementou a SAR na pasta saturada do solo até 15 próximo do tubo de rega gota a gota. Importante contudo é que apenas pequenas alterações ocorreram no SAR à superfície.

Notes

Acknowledgements

We thank Kenneth Knudson for access to the site. The assistance of numerous employees of BeneTerra, LLC is gratefully acknowledged. Funding for this research is provided by the US Geological Survey Energy Resources Program. We thank George Breit for assistance with mineralogy. Rick Healy, K.J. Reddy, John Wheaton and an anonymous reviewer provided helpful comments on earlier versions of this paper.

Supplementary material

10040_2013_1058_MOESM1_ESM.pdf (221 kb)
ESM 1 (PDF 221 kb)
10040_2013_1058_MOESM2_ESM.pdf (295 kb)
ESM 2 (PDF 294 kb)

References

  1. Allen R (1999) REF-ET: reference evapotranspiration calculation software for FAO and ASCE standardized equations. Kimberly Research and Extension Center, University of Idaho, Kimberly, ID. http://www.kimberly.uidaho.edu/ref-et/. Accessed April 9, 2011
  2. Ayers R, Westcot D (1985) Water quality for agriculture. FAO irrigation and drainage paper no. 29 rev. 1. UN Food and Agriculture Organization, RomeGoogle Scholar
  3. Bartos T, Ogle K (2002) Water quality and environmental isotopic analyses of ground-water samples collected from the Wasatch and Fort Union formations in areas of coalbed methane development: implications to recharge and ground-water flow, eastern Powder River Basin, Wyoming. US Geol Surv Water Resour Invest Rep 02-4045, 88 ppGoogle Scholar
  4. Bern C, Breit G et al (2013a) Deep subsurface drip irrigation using coal-bed sodic water: part II, geochemical processes. Agric Water Manag 118:122–134. doi: 10.1016/j.agwat.2012.1011.1013 CrossRefGoogle Scholar
  5. Bern C, Breit G et al. (2013b) Deep subsurface drip irrigation using coal-bed sodic water: part I, water and solute movement. Agric Water Manag 135–149. doi: 10.1016/j.agwat.2012.1011.1014
  6. Brinck E, Drever J et al (2008) The geochemical evolution of water coproduced with coalbed natural gas in the Powder River Basin, Wyoming. Environ Geosci 15(4):153–171CrossRefGoogle Scholar
  7. Brown G, Brindley G (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc Monogr. 5, Mineralogical Society, LondonGoogle Scholar
  8. Buck B, Wolff K et al (2006) Salt mineralogy of Las Vegas Wash, Nevada: morphology and subsurface evaporation. Soil Sci Soc Am J 70:1639–1651CrossRefGoogle Scholar
  9. Bui E, Krogh L et al (1998) Distribution of sodic soils: the world scene. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management, and environmental consequences. Oxford University Press, New York, pp 19–33Google Scholar
  10. Chaudhari S, Somawanshi R (2004) Unsaturated flow of different quality irrigation waters through clay, clay loam and silt loam soils and its dependence on soil and solution parameters. Agric Water Manag 64(1):69–90. doi: 10.1016/S0378-3774(1003)00145-00148 CrossRefGoogle Scholar
  11. Clark M (2012) Water-quality characteristics and trend analysis for the Tongue, Powder, Cheyenne, and Bell Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010. US Geol Surv Sci Inv Rep 2012-5117, 70 ppGoogle Scholar
  12. de Almeida B, da Silva A et al (2008) Evaluation of automotive varnish as a coating for density measurements of soil clods. Soil Sci Soc Am J 72(2):449–452Google Scholar
  13. Drever J (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am Mineral 58:553–554Google Scholar
  14. Eberl D (2003) A user’s guide to ROCKJOCK: a program for determining quantitative mineralogy from powder x-ray diffraction data. US Geol Surv Open-File Rep 03-78, 41 ppGoogle Scholar
  15. Engle M, Bern C et al (2011) Tracking solutes and water from subsurface drip irrigation of application of coalbed methane produced waters, Powder River Basin, Wyoming. Environ Geosci. doi: 10.1306/eg.03031111004 Google Scholar
  16. Ganjegunte G, King L et al (2008) Cumulative soil chemistry changes from land application of saline-sodic waters. J Environ Qual 37:S-128–S-138. doi: 10.2134/jeq2007.0424 CrossRefGoogle Scholar
  17. Geboy N, Engle M et al (2011) Summary of inorganic compositional data for groundwater, soil-water, and surface-water samples at the Headgate Draw Subsurface Drip Irrigation Site, Johnson County, Wyoming. US Geol Surv Data Series 619, 6 ppGoogle Scholar
  18. Healy R, Rice C et al (2008) Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: evolution of water and sediment chemistry. Water Resour Res 44(W06424). doi: 10.1029/2007WR006396
  19. Healy R, Bartos T et al (2011) Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA. J Hydrol 43:37–48. doi: 10.1016/j.jhydrol.2011.1003.1042 CrossRefGoogle Scholar
  20. Jackson R, Reddy K (2007a) Geochemistry of coalbed natural gas (CBNG) produced water in Powder River Basin, Wyoming: salinity and sodicity. Water Air Soil Pollut 18:49–61. doi: 10.1007/s11270-11007-19398-11279 CrossRefGoogle Scholar
  21. Jackson RE, Reddy KJ (2007b) Trace element chemistry of coalbed natural gas produced water in the Powder River Basin, Wyoming. Environ Sci Technol 41:5953–5959CrossRefGoogle Scholar
  22. Johnston C, Vance G et al (2008) Irrigation with coalbed natural gas co-produced water. Agric Water Manag 95:1243–1252CrossRefGoogle Scholar
  23. Keller L, McCarthy G et al (1986) Mineralogy and stability of soil evaporites in North Dakota. Soil Sci Soc Am J 50:1069–1071CrossRefGoogle Scholar
  24. Levy G, Shainberg I et al (1998) Physical properties of sodic soils. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management, and environmental consequences. Oxford University Press, New York, pp 77–94Google Scholar
  25. Lipinski B, Sams J et al (2008) Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming. Geophysics 73:B77–B84. doi: 10.1190/1191.2901200 CrossRefGoogle Scholar
  26. Moore D, Reynolds R (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford Univ. PressGoogle Scholar
  27. National Climatic Data Center http://www.ncdc.noaa.gov/oa/climate/stationlocator.html. Accessed April 16, 2012
  28. Oster J, Jayawardne N (1998) Agricultural management of sodic soils. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management, and environmental consequences. Oxford University Press, New York, pp 125–147Google Scholar
  29. Parkhurst D, Appelo C (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Survey Water Resour Inv Rep 99-4259, 310 ppGoogle Scholar
  30. Pollastro R (1982) A recommended procedure for the preparation of oriented clay-mineral specimens for x-ray diffraction analysis: modifications to Drever’s filter membrane peel technique. US Geol Survey Open-File Rep 82–71Google Scholar
  31. Quirk J, Schofield R (1955) The effect of electrolyte concentration on soil permeability. J Soil Sci 6:163–178CrossRefGoogle Scholar
  32. Rhoades J (1982) Soluble salts. In: Page AL (ed) Methods of soil analysis, part 2: chemical and microbiological properties. American Society of Agronomy, Madison, WI, pp 167–179Google Scholar
  33. Rice C, Nuccio V (2000) Water produced with coalbed methane. US Geol Surv Fact Sheet FS-156-00Google Scholar
  34. Rice C, Bartos T et al (2002) Chemical and isotopic composition of water in the Fort Union and Wasatch formations of the Powder River Basin, Wyoming and Montana: implications for coalbed methane development. In: Schwochow SD, Nuccio VF (eds) Coalbed methane of North America II. The Rocky Mountain Association of Geologists, Denver, CO, pp 53–70Google Scholar
  35. Schaap M, Leij F et al (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62(4):847–855CrossRefGoogle Scholar
  36. Suarez D (1989) Impact of agricultural practices on groundwater salinity. Agric Ecosyst Environ 26:215–227CrossRefGoogle Scholar
  37. Sumner M, Miller W (1996) Cation-exchange capacity and exchange coefficient. In: Sparks DL (ed) Methods of soil analysis, part 3, chemical methods. Soil Sci Soc Am Book Series, Madison, WIGoogle Scholar
  38. Theodorakos P, d’Angelo W, et al. (2002) Fluoride, chloride, nitrate, and sulfate in aqueous solution utilizing AutoSuppression chemically suppressed ion chromatography. In: Taggart Jr. JE. Analytical methods for chemical analysis of geologic and other materials. US Geol Surv Open-File Rep 02-223-VGoogle Scholar
  39. Timpson M, Richardson J et al (1986) Evaporite mineralogy associated with saline seeps in southwestern North Dakota. Soil Sci Soc Am J 50:490–493CrossRefGoogle Scholar
  40. US Energy Information Administration (2012) Annual energy outlook 2012 with projections to 2035. DOE/EIA report 0383(2012), US EIA, Washington, DC, 239 ppGoogle Scholar
  41. Van Voast W (2003) Geochemical signature of formation waters associated with coalbed methane. AAPG Bull 87(4):667–676CrossRefGoogle Scholar
  42. Vance G, King L et al (2008) Soil and plant responses from land application of saline–sodic waters: implications of management. J Environ Qual 37:S-139–S-148. doi: 10.2134/jeq2007.0442 CrossRefGoogle Scholar
  43. Whittig L, Deyo A et al (1982) Evaporite mineral species in Mancos Shale and salt efflorescence, Upper Colorado River Basin. Soil Sci Soc Am J 46:645–651CrossRefGoogle Scholar
  44. Wichelns D, Oster J (2006) Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric Water Manag. doi: 10.1016/j.agwat.2006.1007.1014 Google Scholar
  45. Wyoming Oil and Gas Conservation Commission (2012) Basin statistics for the Powder River Basin. http://wogcc.state.wy.us/StatsForBasin.cfm. Accessed August 27, 2012
  46. Zupancic J, Roenbaugh J, et al. (2008) System and method for dispersing of coal bed sodic water, Patent 7,320,559. BeneTerra, LLC, Pratt, KS. http://patft.uspto.gov/netahtml/PTO/srchnum.htm. April 2012

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • C. R. Bern
    • 1
    Email author
  • A. R. Boehlke
    • 1
  • M. A. Engle
    • 2
    • 3
  • N. J. Geboy
    • 2
  • K. T. Schroeder
    • 4
  • J. W. Zupancic
    • 5
  1. 1.US Geological SurveyDenverUSA
  2. 2.US Geological SurveyRestonUSA
  3. 3.Department of Geological SciencesUniversity of Texas at El PasoEl PasoUSA
  4. 4.US Department of EnergyNational Energy Technology LaboratoryPittsburghUSA
  5. 5.BeneTerra LLCSheridanUSA

Personalised recommendations