Skip to main content

Advertisement

Log in

Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia

Analyse statistique multi variables de données hydro chimiques pour caractériser une connexion aquifère–cours d’eau alluvial durant sécheresse et hautes eaux: Cressbrook Creek, Sud-Est du Queensland, Australie

Análisis estadístico multivariado de datos hidroquímicos para evaluar la conectividad acuífero aluvial–corriente durante sequías e inundaciones: Arroyo Cressbrook, sudeste de Queensland, Australia

基于水化学成分多元统计分析法的地表–地下水力联系特征研究

Análise estatística multivariada de dados hidroquímicos para avaliar a conetividade de um aquífero aluvial–rio durante secas e inundações: Ribeiro Cressbrook, sudeste de Queensland, Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.

Résumé

Une analyse géochimique statistique multi variables à l’échelle du bassin versant a permis un diagnostic des interactions entre une nappe alluviale et Cressbrook Creek, un système de drainage intermittent en Queensland du Sud-Est, Australie. L’analyse des groupes hiérarchisés et l’analyse par composante principale ont été appliquées à des séries chronologiques de données pour évaluer l’évolution géochimique de la nappe souterraine durant des périodes de sécheresse extrême et d’inondations importantes. Un modèle géologique tridimensionnel simple été développé pour conceptualiser la morphologie du bassin versant et le cadre stratigraphique de l’alluvium. L’alluvium forme un système à deux couches avec un niveau basal à grains grossiers surmonté par un niveau riche en argile à faible perméabilité. Dans les parties supérieures et médianes du bassin versant, l’eau de l’aquifère est chimiquement similaire à l’eau de surface, particulièrement près du cours d’eau (similarité marquée par des ratios HCO3/Cl and K/Na élevés et des basses salinités), indiquant un degré de connectivité élevé. Dans la partie inférieure du bassin versant, l’eau de l’aquifère est plus saline avec des ratios HCO3/Cl and K/Na plus faibles, notamment durant les périodes de sècheresse. La salinité de la nappe a décru de façon substantielle à la suite de la crue sévère de 2011, particulièrement dans le bassin inférieur, confirmant que le ruissellement est un mécanisme important, à la fois pour la recharge et pour le maintien de la qualité de la nappe. L’approche intégrée effectuée dans cette étude a rendu possible une interprétation efficiente du processus hydrogéologique et peut être appliquée à une variété de configurations pour synthétiser et évaluer de larges ensembles de donnés hydrochimiques.

Resumen

Un análisis estadístico multivariado a escala de cuenca de la hidroquímica permitió la evaluación de las interacciones entre el agua subterránea aluvial y el arroyo Cressbrook, un sistema de drenaje intermitente en el sudeste de Queensland, Australia. Se aplicaron análisis de cluster jerárquico y análisis de componentes principales a series temporales de datos para evaluar la evolución hidroquímica del agua subterránea durante períodos de extremas sequías y severas inundaciones. Se desarrolló un modelo geológico tridimensional simple para conceptualizar la morfología de la cuenca y el marco estratigráfico del aluvio. El aluvio forma un sistema de dos capas con una capa basal de grano grueso cubierta por una unidad rica en arcilla de baja permeabilidad. En la cuenca superior y media, el agua subterránea aluvial es químicamente similar al agua de la corriente, particularmente cerca del arroyo (reflejado por una alta relación y una baja salinidad), indicando un alto grado de conectividad. En la cuenca inferior el agua subterránea es más salino con relaciones HCO3/Cl y K/Na más bajas, sobretodo durante períodos secos. La salinidad del agua subterránea decreció sustancialmente posteriormente a la severa inundación del 2011, sobre todo en la cuenca inferior, confirmando que la inundación es un mecanismo importante tanto para la recarga como para el mantenimiento de la calidad del agua subterránea. El enfoque integrado usado en este estudio permitió la efectiva interpretación de los procesos hidrológicos y puede ser aplicado a una variedad de configuraciones hidrológicas para sintetizar y evaluar grandes conjuntos de datos hidroquímicos.

摘要

本文基于水化学成分的多元统计分析, 研究地表水系与其下覆冲积含水层之间的水力联系. 采用聚类分析和主成分分析法了解极端天气(干旱及洪涝)影响下的地下水水化学成分演化规律. 研究区位于澳大利昆士兰洲东南部的Cressbrook 流域. 其地貌及地质特征被概化为三维地质模型:冲积含水层下部为粗颗粒的基岩层, 上覆泥质低渗透性岩层. 研究表明:流域的上中游, 地下水矿化度偏低, 其水化学成分表现为HCO3/Cl及K/Na 比值较高. 该特征与地表水水化学特征吻合, 反映了地表水及地下水之间的强水力联系. 流域的下游, 地下水矿化度较其上游区域偏大, HCO3/Cl 和 K/Na 比值偏低, 该特征于旱季尤为显著. 受2011年特大洪水的影响, 地下水的矿化度明显降低, 特别是下游区域. 这证明了洪水过程对地下水补给及其水化学成分的影响. 本文所采用的方法可有效且广泛地应用于水文过程调查研究.

Resumo

Uma análise estatística multivariada de parâmetros hidroquímicos à escala de bacia permitiu deduzir as interações entre a água subterrânea aluvial e o Ribeiro de Cressbrook, um sistema de drenagem intermitente no sudeste de Queensland, Austrália. As análises grupais hierárquicas e as análises de componentes principais foram aplicadas a dados temporais sequenciais para avaliar a evolução hidroquímica da água subterrânea durante períodos de secas e inundações severas. Foi desenvolvido um modelo geológico tridimensional simples para concetualizar a morfologia da bacia e a estrutura estratigráfica da aluvião. A aluvião forma um sistema de duas camadas, com uma camada basal de granulometria grosseira coberta por uma unidade de baixa permeabilidade rica em argila. Na parte superior e intermédia da bacia a água subterrânea é quimicamente semelhante à água do curso de água superficial, particularmente nas proximidades do ribeiro (refletido pelas elevadas relações HCO3/Cl e K/Na e baixas salinidades), indicando um elevado grau de conetividade. Na parte inferior da bacia, a água subterrânea é mais salina, com relações HCO3/Cl e K/Na mais reduzidas, nomeadamente durante períodos secos. A salinidade da água subterrânea decresceu no seguimento da inundação severa de 2011, principalmente na parte mais baixa da bacia, confirmando que as inundações são um importante mecanismo tanto para a recarga como para a manutenção da qualidade da água subterrânea. A metodologia integrada usada neste estudo permitiu uma interpretação efetiva dos processos hidrológicos e pode ser aplicada a uma variedade de ambientes hidrológicos para sintetizar e avaliar grandes conjuntos de dados hidroquímicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alther GA (1989) A simplified statistical sequence applied to routine water quality analysis: a case history. Ground Water 17(6):556–561

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The Netherlands, pp 451–463

    Book  Google Scholar 

  • Artimo A, Sarapera S, Ylander I (2008) Methods for integrating an extensive geodatabase with 3D modeling and data management tools for the Virttaankangas artificial recharge project, southwestern Finland. Water Resour Manag 22(12):1723–1739

    Article  Google Scholar 

  • Bakari S, Aagaard P, Vogt R, Ruden F, Johansen I, Vuai S (2012) Delineation of groundwater provenance in a coastal aquifer using statistical and isotopic methods, southeast Tanzania. Environ Earth Sci 66(3):889–902

    Article  Google Scholar 

  • Bardossy G, Fodor J (2001) Traditional and new ways to handle uncertainty in geology. Nat Resour Res 10(3):179–187

    Article  Google Scholar 

  • Bureau of Meteorology (2012) Commonwealth of Australia Bureau of Meteorology. Available online at http://www.bom.gov.au/climate/data/index.shtml. Accessed 26 March 2012

  • Cendón DI, Larsen JR, Jones BG, Nanson GC, Rickleman D, Hankin SI, Pueyo JJ, Maroulis J (2010) Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia. J Hydrol 392(3–4):150–163

    Article  Google Scholar 

  • Champ DR, Gulens J, Jackson RE (1979) Oxidation-reduction sequences in ground water flow systems. Can J Earth Sci 16:12–23

    Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353(3–4):294–313

    Article  Google Scholar 

  • Cox ME, James J, Hawke A, Raiber M (2013) Groundwater Visualisation System (GVS): a software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation. J Hydrol 491(1):56–72

    Article  Google Scholar 

  • Crosbie RS, Morrow D, Cresswell RG, Leaney FW, Lamontagne S, Lefournour M (2012) New insights into the chemical and isotopic composition of rainfall across Australia. CSIRO Water for a Healthy Country Flagship, Brisbane, Australia

  • Daughney CJ, Reeves RR (2005) Definition of hydrochemical facies in the New Zealand National Groundwater Monitoring Programme. J Hydrol New Zealand 44(2):105–130

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, Toronto

    Google Scholar 

  • Delgado-Outeiriňo I, Araujo-Nespereira P, Cid-Fernández JA, Mejuto JC, Martínez-Carballo E, Simal-Gándara J (2012) Hydrogeothermal modelling vs inorganic chemical composition of thermal waters from the area of Carballiňo (NW Spain). Hydrol Earth Syst Sci 16(1):157–166

    Article  Google Scholar 

  • Department of Environment and Resource Management (2011) Groundwater database (GWDB). Accessed on 30 June 2011, Available on request

  • Drever JI (1997) The geochemistry of natural waters, surface and groundwater environments, vol 161, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Eastoe CJ, Hutchison WR, Hibbs BJ, Hawley J, Hogan JF (2010) Interaction of a river with an alluvial basin aquifer: stable isotopes, salinity and water budgets. J Hydrol 395(1–2):67–78

    Article  Google Scholar 

  • EHA (2006) Groundwater review of South East Queensland on-shore aquifer systems: draft preliminary scoping report. Queensland Department of Natural Resources Mines and Water, Canberra, Australia, pp 8–38

  • Farnham IM, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometr Intell Lab Syst 60:265–281. doi:10.1016/S0169-7439(01)00201-5

  • Fernau ME, Samson PJ (1990) Use of cluster analysis to define periods of similar meteorological and precipitation chemistry in eastern North America, part 1: transport patterns. J Appl Meteorol 29(8):735–750

    Article  Google Scholar 

  • Field A (2009) Discovering statistics using SPSS, 3rd edn. Sage, London, pp 647–651

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 97 pp

    Google Scholar 

  • Fröhlich HL, Breuer L (2008) Water source characterization through spatiotemporal patterns of major, minor and trace element stream concentrations in a complex, mesoscale German catchment. Hydrol Process 22(12):2028–2043

    Article  Google Scholar 

  • Geological Survey of Queensland and Irrigation and Water Supply Commission (1973) Groundwater Resources of Queensland: explanatory notes. 1:2,500,000 Map, GSQ, Brisbane, Australia

  • Giambastiani BMS, Kelly BFJ, McCallum AM, The C (2009a) Three dimensional temporal analysis of surface and ground water interactions. First Australian 3D Hydrogeology Workshop, Extended abstracts, Geoscience Australia, Canberra, Australia, pp 29–30

  • Giambastiani BMS, Kelly BFJ, The C, Andersen MS, McCallum AM, Acworth RI (2009b) 3D time space analysis of groundwater head change for mapping river and aquifer interactions. 18th World IMACS/MODSIM Congress, Cairns, Australia, July 2009

  • Gibbs R (1970) Mechanisms controlling world water chemistry. Sci 170(3962):1088–1090

    Article  Google Scholar 

  • Gill B, Cherry D, Adelana M, Cheng X (2011) Using three-dimensional geological mapping methods to inform sustainable groundwater development in a volcanic landscape, Victoria, Australia. Hydrogeol J 19(7):1349–1365

    Article  Google Scholar 

  • Gong H, Hu Z, Zhao W, Wang Y, Gong Z (2008) Three dimensional groundwater virtual reality system and its spatial database. 2007 International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, July 2007, pp 4741–4744

  • Guggenmos MR, Daughney CJ, Jackson BM, Mortenstern U (2011) Regional-scale identification of groundwater–surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand. Hydrol Earth Syst Sci 15(11):3383–3398

    Article  Google Scholar 

  • Güler C, Thyne D (2004) Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resour Res 40(12):455–474

    Article  Google Scholar 

  • Güler C, Thyne D, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474

    Article  Google Scholar 

  • Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2006) Multivariate data analysis, 6th edn. Prentice Hall, Englewood Cliffs, NJ, pp 115–198

    Google Scholar 

  • Harms BP, Pointon SM (1999) Land resource assessment of the Brisbane Valley, Queensland. Brisbane, Land Resources Bulletin DNRQ99006, Department of Natural Resources, Brisbane, Australia

  • Hayward MA (2000) Brisbane Valley coarse sand drilling project, preliminary data report. LUEI report 3, Land Use and Extractive Industries, Department of Mines and Energy, Brisbane, Australia

    Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, third edition. US Geol Surv Water Supp Pap 2254, pp 80–105

  • Hughes CE, Cendόn DI, Johansen MP, Meredith KT (2011) Climate change and groundwater. In: Jones JAA (ed) Sustaining groundwater resources. Springer, Dordrecht, The Netherlands, pp 97–117

    Chapter  Google Scholar 

  • Ivkovic K (2009) A top-down approach to characterise aquifer–river interaction processes. J Hydrol 365(3–4):145–155

    Article  Google Scholar 

  • James A, Cox M, Hawke A, Young J (2010) A 3D visualisation model applied to a thick, multi-layered alluvial groundwater system under stress: Condamine Valley, QLD. National Groundwater Conference, National Convention Centre, Canberra, 31 October–4 November 2010

    Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10(6):873–887

    Article  Google Scholar 

  • Kannel PR, Lee S, Kanel SR, Kahn SP (2007) Chemometric application in classification and assessment of monitoring locations of an urban river system. Anal Chim Acta 582(2):390–399

    Article  Google Scholar 

  • Kennedy V, Malcolm R (1978) Geochemistry of the Mattole River in northern California. US Geological Survey, Reston, VA, 324 pp

    Google Scholar 

  • Kumar M, Kumari K, Singh UK, Ramanathan A (2009) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57(4):873–884

    Article  Google Scholar 

  • Kurtzman D, Netzer L, Weisbrod N, Nasser A, Graber ER, Ronen D (2012) Characterization of deep aquifer dynamics using principal component analysis of sequential multilevel data. Hydrol Earth Syst Sci 16(3):761–771

    Article  Google Scholar 

  • Lange J (2005) Dynamics of transmission losses in a large and stream channel. J Hydrol 306(1–4):112–126

    Article  Google Scholar 

  • Mann CJ (1993) Uncertainty in geology. In: Davis JC, Herzfeld UC (eds) Studies in mathematical geology, vol 5. Oxford University Press, New York, pp 241–254

    Google Scholar 

  • Martínez-Santos P, Martínez-Alfaro PE, Sanz E, Galindo A (2010) Daily scale modelling of aquifer–river connectivity in the urban alluvial aquifer in Langreo, Spain. Hydrogeol J 18(6):1525–1537

    Article  Google Scholar 

  • Massmann G, Nogeitzig A, Taute T, Pekdeger A (2008) Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environ Geol 54:53–65

    Article  Google Scholar 

  • McCallum AM, Andersen MS, Kelly BFJ, Giambastiani B, Acworth RI (2009) Hydrological investigations of surface water-groundwater interactions in a sub-catchment in the Namoi Valley, NSW, Australia. In: Proceedings of Symposium JS.2 at the Joint IAHS and IAH Convention, Hyderabad, India, September 2009, IAHS Publ 329, Heise, Hanover, Germany, pp 157–166

  • McNeil VH, Cox ME, Preda M (2005) Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia. J Hydrol 310(1–4):181–200

    Article  Google Scholar 

  • Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352(3–4):355–366

    Article  Google Scholar 

  • Merritt JE, Whitbread K (2008) Combining ARC GIS maps and attributed 3D geological models to provide geoscience solutions in the urban environment: examples from the City of Glasgow and north-east England. Taylor and Francis, London, pp 185–192

    Google Scholar 

  • Monjerezi M, Vogt RD, Aagaard P, Saka JDK (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Appl Geochem 26(8):1399–1413

    Article  Google Scholar 

  • Mooi E, Sarstedt M (2011) A concise guide to market research. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-12541-6_9

  • Morin E, Grodek T, Dahan O, Benito G, Kulls C, Jacoby Y, Van Langenhove G, Seely M, Enzel Y (2009) Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia. J Hydrol 368(1):262–275

    Article  Google Scholar 

  • Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water systems: a case study—Mahanadi River (India). J Hydrol 331(3–4):434–445

    Article  Google Scholar 

  • Parry ML Canziani OF Palutikof JP van der Linden PJ Hanson (eds) (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Promma K, Zheng C, Asnachinda P (2007) Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly. Hydrogeol J 15(3):495–513

    Article  Google Scholar 

  • Ragno G, De Luca M, Loele G (2007) An application of cluster analysis and multivariate classification methods to spring water monitoring data. Microchem J 87(2):119–127

    Article  Google Scholar 

  • Raiber M, White PA, Daughney CJ, Tschritter C, Davidson P, Bainbridge SE (2012) Three-dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand. J Hydrol 436–437:13–34. doi:10.1016/j.jhydrol.2012.01.045

    Article  Google Scholar 

  • Reeves RR, Morgenstern U, Daughney CJ, Stewart MK, Gordon D (2008) Identifying leakage to groundwater from Lake Rerewhakaaitu using isotopic and water quality data. J Hydrol (New Zealand) 47(2):85–106

    Google Scholar 

  • Robins NS, Rutter HK, Dumpleton S, Peach DW (2005) The role of 3D visualisation as an analytical tool preparatory to numerical modelling. J Hydrol 301(1–4):287–295

    Article  Google Scholar 

  • Royse KR, Kessler H, Robbins NS, Hughes AG, Mathers SJ (2010) The use of 3D geological models in the development of the conceptual groundwater model. Z dt Ges Geowiss 161(2):237–249

    Google Scholar 

  • Rushton KR, Tomlinson LM (1979) Possible mechanisms for leakage between aquifers and rivers. J Hydrol 40(1–2):49–65

    Article  Google Scholar 

  • Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater-surface water interaction under scenarios of climate change using a high resolution transient groundwater model. J Hydrol 333(2–4):165–181

    Article  Google Scholar 

  • Simpson SC, Meixner T (2012) Modeling effects of floods on streambed hydraulic conductivity and groundwater–surface water interactions. Water Resour Res 48(2):W02515

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67

    Article  Google Scholar 

  • Soulsby C, Tetzlaff D, van den Bedem N, Malcolm IA, Bacon PJ, Youngson AF (2007) Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. J Hydrol 333(2–4):199–213

    Article  Google Scholar 

  • Templ M, Filzmoser P, Reimann C (2008) Cluster analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 23:2198–2213. doi:10.1016/j.apgeochem.2008.03.004

    Google Scholar 

  • Thyne GD, Güler C, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42(5):711–723

    Article  Google Scholar 

  • Townend J (2002) Practical statistics for environmental and biological scientists. Wiley, Chichester, UK, pp 205–228

  • Vázquez-Suňé E, Capino B, Abarca E, Carrera J (2007) Estimation of recharge from floods in disconnected stream-aquifer systems. Ground Water 45(5):579–589

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7(1):28–45

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139, 21 pp

  • Wycisk P, Hubert T, Gossel W, Neumann C (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Comput Geosci 35(1):165–182

    Article  Google Scholar 

  • Yidana SM, Banoeng-Yakubo B, Akabzaa TM (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J Afr Earth Sci 58(2):220–234

    Article  Google Scholar 

  • Younger PL (2007) Groundwater in the environment Blackwell, Oxford, pp 98–101

  • Zhu L, Zhuang Z (2010) Framework system and research flow of uncertainty in 3D geological structure models. Min Sci Technol (China) 20(2):306–311

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Queensland Department of Natural Resources and Mines (DNRM; previously DERM) for access to the groundwater database, and in particular Ashley Bleakley and Blake Topp for general input and field support. The authors also thank the Toowoomba City Council for providing surface-water quality data, and laboratory staff at the Queensland University of Technology, including Shane Russell and James Brady, for assistance with chemical analysis. Mauricio Taulis is thanked for his comments on the manuscript and his input into the study. Landholders (especially Craig and Greg Brough and Don Duncombe) are acknowledged for providing access to bores and field support. The authors would also like to thank the Associate Editor Dr John Gates and three anonymous reviewers for their comments, which helped to improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A.C., Raiber, M. & Cox, M.E. Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia. Hydrogeol J 22, 481–500 (2014). https://doi.org/10.1007/s10040-013-1057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1057-1

Keywords

Navigation