Abstract
High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.
Résumé
Le stockage d’énergie thermale en aquifère à haute température (HT-ATES) est une technique importante pour la conservation de l’énergie. Un facteur contrôlant la faisabilité économique de l’HT-ATES est l’efficacité de la récupération. Du fait de l’effet de la gravité sur l’écoulement (convection libre), les systèmes d’HT-ATES appliqués à des aquifères perméables ont typiquement une efficacité de récupération plus faible que les systèmes ATES conventionnels (basse température). Pour une estimation fiable de l’efficacité de récupération, il est donc important de prendre en compte l’effet d’écoulement gravifique. Une évaluation numérique des principaux facteurs influençant l’efficacité de récupération des systèmes HT-ATES est présentée. Des simulations de sensibilité évaluant les effets des propriétés de l’aquifère, ainsi que l’incidence des variables opérationnelles, ont été réalisées pour en déduire les facteurs les plus importants qui contrôlent l’efficacité de la récupération. Une corrélation a été trouvée entre le nombre adimensionnel de Rayleigh (une mesure de l’intensité relative de la convection libre) et l’efficacité de récupération calculée. Sur la base d’un nombre de Rayleigh modifié, deux solutions analytiques simples sont proposées pour calculer l’efficacité de la récupération, chacune d’entre elles couvrant une gamme différente d’épaisseurs de l’aquifère. Les solutions analytiques reproduisent précisément tous les scénarios modélisés numériquement avec une erreur moyenne de moins de 3 %. La méthode proposée peut être d’un intérêt pratique pour envisager ou concevoir un système HT-ATES.
Resumen
El almacenamiento de energía térmica en un acuífero de alta temperatura (HT-ATES) es una técnica para la conservación de energía. Un factor que controla la factibilidad económica de HT-ATES es la eficiencia de recuperación. Debido a los efectos del flujo de densidad forzada (convección libre), los sistemas HT-ATES aplicados en acuíferos permeables tienen típicamente más baja eficiencia de recuperación que los convencionales (bajas temperaturas) sistemas ATES. Para una estimación confiable de la eficiencia de recuperación es, por lo tanto, importante tomar en cuenta el efecto del flujo de densidad forzada. Se presenta una evaluación numérica de los factores principales que influyen en la eficiencia de recuperación de los sistemas HT-ATES. Se llevaron a cabo las corridas de sensibilidad para evaluar los efectos de las propiedades del acuífero, así como de las variables operacionales, para deducir los factores más importantes que controlan la eficiencia de recuperación. Se encontró una correlación entre el número adimensional de Rayleigh (una medida de la fuerza relativa de la convección libre) y las eficiencias calculadas de recuperación. Basado en un número de Rayleigh modificado, se proponen dos soluciones analíticas simples para calcular la eficiencia de recuperación, cada una de ellas cubriendo un rango diferente de espesor de acuífero. Las soluciones analíticas reproducen precisamente todos los escenarios modelados numéricamente con un error promedio de menos que 3 %. El método propuesto puede ser de un uso práctico al considerar o diseñar un sistema HT-ATES.
摘要
高温含水层热能储是能源保存的一项重要技术。高温含水层热能储经济可能性一个控制因素就是回收效率。由于受密度驱动水流(自由对流)的影响,在典型透水含水层应用的高温含水层热能储系统回收效率比常规(地温)含水层热能储要低。为了估算可靠的回收效率,因此,必须要考虑受密度驱动水流的影响。对影响高温含水层热能储回收效率的主要因素进行了数值评估。通过评估含水层特性影响的灵敏度以及操作变量,可以推断出控制回收效率的最重要因素。发现无量Rayleigh数(自由对流相对强势的测量数)和计算的回收效率之间 存在相互关系。根据修正的Rayleigh数,提出了两个简单的解析方法,计算回收效率,每个方法涵盖不同范围的含水层厚度。解析方法精确地再现所有数值模拟方案,平均误差小于3%。提出的方法在考虑或设计高温含水层热能储时非常实用。
Resumo
O armazenamento de energia térmica de alta temperatura em aquíferos (HT-ATES) é uma técnica importante para a conservação de energia. Um fator de controlo para a viabilidade económica do HT-ATES é a eficiência de recuperação. Devido aos efeitos da densidade motivados pelo fluxo (conveção livre), os sistemas HT-ATES aplicados em aquíferos permeáveis têm normalmente eficiências de recuperação inferiores aos sistemas convencionais ATES (baixa temperatura). Para obter uma estimativa fiável da eficiência de recuperação, é importante considerar o efeito da densidade induzido pelo fator fluxo. É apresentada uma avaliação numérica dos principais fatores que influenciam a eficiência de recuperação de sistemas de HT-ATES. Foram realizadas análises de sensibilidade para avaliar os efeitos das propriedades do aquífero, assim como das variáveis operacionais, para inferir os fatores mais importantes que controlam a eficiência de recuperação. Foi encontrada uma correlação entre o número de Rayleigh adimensional (uma medida da força relativa de conveção livre) e as eficiências de recuperação calculadas. Com base num número de Rayleigh modificado, são propostas duas soluções analíticas simples para calcular a eficiência de recuperação, cada uma cobrindo uma gama de diferentes espessuras do aquífero. As soluções analíticas reproduzem com precisão numérica todos os cenários modelados com uma média de erro inferior a 3 %. O método proposto pode ser de uso prático, quando se pretende projetar um sistema HT-ATES.
Similar content being viewed by others
References
Bonte M, Visser P, Kooi H, van Breukelen B, Claas J, Chacőn Rovati V and Stuyfzand P (2011) Effects of aquifer thermal energy storage on groundwater quality elucidated by field and laboratory investigations. First Dutch Geothermal Congress, Utrecht, The Netherlands, October 2011
Brons HJ (1992) Biogeochemical aspects of aquifer thermal energy storage. PhD Thesis, Wageningen University, The Netherlands, 127 pp
Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical aquifer material from a thermal-energy storage site. Water Res 25(6):729–736
Buscheck TA (1984) The hydrothermal analysis of aquifer thermal energy storage. PhD Thesis, University of California, Berkeley, USA
Buscheck TA, Doughty C, Tsang CF (1983) Prediction and analysis of a field experiment on a multi-layered aquifer thermal energy storage system with strong buoyancy flow. Water Resour Res 19(5):1307–1315
Caljé, RJ (2011) Future use of Aquifer Thermal Energy Storage below the historic centre of Amsterdam. Master thesis, Delft University of Technology
Doughty C, Hellström G, Tsang CF, Claesson J (1982) A dimensionless parameter approach to the thermal behaviour of an aquifer thermal energy storage system. Water Resour Res 18(3):571–587
Drijver BC (2011) High temperature aquifer thermal energy storage (HT-ATES): water treatment in practice. First Dutch Geothermal Congress, Utrecht, The Netherlands, October 2011
Ferguson G (2007) Heterogeneity and thermal modeling of groundwater. Groundwater 45(4):485–490
Griffioen J, Appelo CAJ (1993) Nature and extent of carbonate precipitation during aquifer thermal energy storage. Appl Geochem 8(2):161–176
Gutierrez-Neri M, Buik N, Drijver B, Godschalk B (2011) Analysis of recovery efficiency in a high-temperature energy storage system. Proceedings of the First National Congress on Geothermal Energy, Utrecht, The Netherlands, October 2011
Hellström G, Tsang CF (1988) Buoyancy flow at a two-fluid interface in a porous medium: analytical studies. Water Resour Res 24(4):493–506
Hellström G, Tsang CF, Claesson J (1979) Heat storage in aquifers: buoyancy flow and thermal stratification problems. Report, Dept. of Math. Phys., Lund Inst. of Technol., Lund, Sweden (also available as Rep. LBL-14246, Lawrence Berkeley Lab., Berkeley, CA)
Kabus F, Seibt P (2000) Aquifer thermal energy storage for the Berlin Reichstag Building: new seat of the German Parliament. Proceedings of the World Geothermal Congress 2000, Kyushu, Tohoku, Japan, May 28–June 10, 2000
Kabus F, Hoffman F, Möllmann G (2005) Aquifer storage of waste heat arising from a gas and steam cogeneration plant: concept and first operating experience. Proceedings World Geothermal Congress, Antalya, Turkey, April 2005
Kabus F, Wolfgramm M, Seibt A, Richlak U, Beuster H (2009) Aquifer thermal energy storage in Neubrandenburg: monitoring throughout three years of regular operation. Proceedings, EFFSTOCK Conference, Stockholm, June 2009, pp 1–8
Katto Y, Masuoka T (1967) Criterion for the onset of convective flow in a fluid in a porous medium. Int J Heat Mass Transfer 10:297–309
Kipp KL (1987) HST3D: a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems. US Geol Surv Water Resour Invest Rep 86-4095
Kranz S, Bartels J (2010) Simulation and data based optimisation of an operating seasonal aquifer thermal energy storage. Proceedings World Geothermal Congress, Bali, Indonesia, April 2010
Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Phil Sot 44:508–521
Nield DA (1975) The onset of transient convective instability. J Fluid Mech 71:441–454
Nield DA, Bejan A (1999) Convection in porous media, 2nd edn. Springer, New York
Sanner B (ed) (1999) High temperature underground thermal energy storage, state-of-the-art and prospects. Giessener Geol Schrift 67:1–158
Sanner B, Kabus F, Seibt P and Bartels J (2005) Underground thermal energy storage for the German Parliament in Berlin, system concept and operational experiences. Proceedings World Geothermal Congress 2005, Antalya, Turkey, April 2005
Sauty JP, Gringarten AC, Landel PA (1978) The effect of thermal dispersion on injection of hot water in aquifers. Proceedings of the Second Invitational Well Testing Symposium, Berkeley, CA, October 1978
Sauty JP, Gringarten AC, Menjoz A, Landel PA (1982) Sensible energy storage in aquifers: 1. theoretical study. Water Resour Res 18(2):245–252
Snijders AL (2000) Lessons from 100 ATES projects: the developments of aquifer storage in the Netherlands. Proceedings of TERRASTOCK 2000, Stuttgart, Germany, August 28–September 1, 2000
Tan KK, Sam T (1999) Simulations of the onset of transient convection in porous media under fixed surface temperature boundary conditions. Second International Conference on CFD in the Minerals and Process Industries. CSIRO, Melbourne, Australia
Tsang CF, Buscheck T, Doughty C (1981) Aquifer thermal energy storage: a numerical simulation of Auburn University field experiment. Water Resour Res 17(3):647–658
Ward JD, Simmons CT, Dillon PJ (2007) A theoretical analysis of mixed convection in aquifer storage and recovery: how important are density effects? J Hydrol 343:169–186
Acknowledgements
We thank the Dutch Foundation on Soil Knowledge Development and Transfer (SKB) for funding this research, Thomas Buscheck for making available his valuable thesis and Christine Doughty and Jörn Bartels for their critical reviews of our work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the theme issue “Hydrogeology of Shallow Thermal Systems”
Rights and permissions
About this article
Cite this article
Schout, G., Drijver, B., Gutierrez-Neri, M. et al. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method. Hydrogeol J 22, 281–291 (2014). https://doi.org/10.1007/s10040-013-1050-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-013-1050-8