Skip to main content

Advertisement

Log in

Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study

Comportement microscopique et macroscopique d’un fluide s’écoulant dans les fractures d’une roche: une étude expérimentale

Micro y macro comportamiento del flujo de fluido a través de rocas fracturadas: un estudio experimental

Micro a makro proudění tekutiny přes skalní lomeniny: experimentální studie

岩石断裂液体流的微观和宏观特征:实验研究

Micro e macro comportamento do escoamento de fluidos através de fraturas de rochas: um estudo experimental

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re > 32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.

Résumé

Le comportement microscopique et macroscopique d’un fluide s’écoulant dans les fractures à parois rugueuses d’une roche a été étudié expérimentalement. La technique avancée sur les microfluides a été introduite afin d’examiner les effets visqueux et inertiels microscopiques de l’écoulement de l’eau dans les fractures d’une roche au voisinage des vides pour différentes vitesses, tandis que le comportement macroscopique de l’écoulement en fracture a été étudié en réalisant des tests triaxiaux sur (des) un grès fracturés, sous des pressions de confinement comprises entre 0.5 et 3.0 MPa. Les tests montrent que les forces inertielles microscopiques augmentent avec la vitesse, avec des effets significatifs sur le mode d’écoulement local près des bords. Avec l’augmentation de la vitesse, la déviation des trajectoires d’écoulement est réduite mais des petites turbulences apparaissent à l’intérieur des cavités. Les résultats des tests montrent que l’écoulement linéaire de Darcy se produit dans des fractures communicantes de la roche, en raison d’une faible ouverture, cependant que dans les fractures non communicantes une déviation non linéaire de l’écoulement survient pour des nombres de Reynolds relativement élevés (Re > 32). Les expériences microscopiques suggèrent que la baisse de la pression, dissipée par les remous à l’intérieur des cavités, pourrait contribuer à un écoulement non linéaire du fluide à travers les joints de la roche. On constate que c’est ce comportement non linéaire qui correspond le mieux au terme quadratique de l’équation de Forcheimer.

Resumen

Se investigó experimentalmente el comportamiento microscópico y macroscópico del flujo de un fluido a través de fracturas de rocas de paredes rugosas. Se introdujo la tecnología microfluídica de avanzada para examinar los efectos microscópicos viscosos e inerciales del flujo de agua a través de las fracturas de rocas en la vecindad de vacíos bajo diferentes velocidades de flujo, mientras que se investigó el comportamiento macroscópico del flujo de fracturas llevando a cabo pruebas triaxiales de flujo a través de areniscas fracturadas bajo presiones de confinamiento que varían de 0.5 a 3.0 MPa. Las pruebas de flujo mostraron que las fuerzas inerciales microscópicas se incrementan con la velocidad de flujo con efectos significativos en el esquema de flujo local cerca de los vacíos. Con el incremento de la velocidad de flujo, la desviación de las trayectorias de flujo se reduce pero aparecen pequeños vórtices dentro de las cavidades. Los resultados de las pruebas del flujo macroscópico muestran que el flujo linear de Darcy tiene lugar para fracturas de rocas apareadas debido a la pequeña apertura, en tanto que una desviación no linear del flujo ocurre para números de Reynolds los relativamente altos en fracturas de rocas no apareadas (Re > 32). El experimento microscópico sugiere que las pérdidas de presión consumida por los vórtices dentro de las cavidades podría contribuir al comportamiento no linear del flujo del fluido a través de las juntas de las rocas. Se encontró que tal comportamiento no linear de flujo se ajusta mejor por la ecuación cuadrática de Forchheimer.

Abstrakt

Mikroskopická a makroskopická chování proudění přes drsné stěny skalních lomenin byl experimentálně zkoumán. Vyspělá mikrofluidní technologie byla zavedena zkoumat mikroskopické viskózní a setrvačné efekty proudění vody různých rychlostni přes skalní lomy v okolí malych dutin, zatímco makroskopické chování toku v pukline byla sledována prováděním toku přes punlinu v pískovci pod napětím v rozsahu od 0.5 do 3.0 MPa. Průtokové experimentální studie ukazují, že mikroskopické setrvačné síly rostou s rychlostí proudění s významným vlivem na lokální proudění v blízkosti malych dutin. S nárůstem rychlosti proudění, je odchylka průtoku snížena, ale malé víry jsou vytvořene na vnitřní straně malych dutin. Ve výsledkach makroskopických toků testy ukazují, že k lineárním Darcy proudění dochází u zavřených kamenných lomenin kvůli malému otvoru, zatímco nelineární odchylka průtoku se vyskytuje při relativně vysokých Reynoldsovych číslel v rozsiřene kamenné pokliňe (Re > 32). Mikroskopické experimenty naznačují, že tlaková ztráta spotřebovana víry uvnitř dutiny by mohla přispět k nelineárnímu chování proudění tekutiny přes skalní puklinu. Je zjištěno, že takové nelineární chování se nejlépe da vyjadrit kvadratickou rovnicí, nazvanou Forchheimer rovnice.

摘要

对通过高低不平岩石断裂的液体流微观和宏观特征进行了实验调查。采用了先进的微流体技术来检验不同水流速度下孔洞附近水流通过岩石断裂的微观粘性和惯性影响,而通过进行围压应力(0.5 到3.0 MPa)下三维水流实验对断裂流的宏观特征进行了调查。水流实验显示微观惯力随着水流 速度的增加而增加,对孔洞附近的局部水流 模式产生较大影响。随着水流速度的增加,水流轨迹的偏差降低,但在孔洞内会出现小的漩涡。宏观水流实验结果显示,由于空穴很小,成双的岩石断裂会出现线性达西水流。而在非成双的岩石断裂(Re>32)中,水流的非线性偏差以高雷若数出现。微观实验表明孔穴内漩涡消耗的压力损耗可以有助于通过岩石节理的非线性液体流行为。发现这样的非线性水流行为与二次Forchheimer 方程最为匹配。

Resumo

Foi experimentalmente investigado o comportamento microscópico e macroscópico do escoamento de fluidos através de rochas com fraturas com paredes rugosas. Introduziu-se uma avançada tecnologia de microfluidos para examinar os efeitos microscópicos, resultantes da viscosidade e da inércia, do escoamento da água através de fraturas de rochas nas imediações de cavidades, utilizando diferentes velocidades de fluxo; por outro lado, o comportamento macroscópico do escoamento nas fraturas foi investigado através a realização de testes de fluxo triaxiais num arenito fraturado, sob tensões confinantes variando de 0.5 a 3.0 MPa. Os testes de escoamento mostram que as forças microscópicas inerciais aumentam com a velocidade do escoamento, com efeitos significativos sobre o padrão local do escoamento perto das cavidades. Com o aumento da velocidade do escoamento, o desvio das trajetórias de escoamento é reduzido, mas surgem pequenos turbilhões dentro das cavidades. Os resultados dos testes macroscópicos de escoamento mostram que o escoamento linear de Darcy ocorre em fraturas da rocha acopladas, devido à pequena abertura entre si, enquanto em fraturas de rocha não acopladas ocorre um desvio linear do fluxo para números relativamente elevados de Reynolds (Re > 32). Os ensaios microscópicos sugerem que a perda de pressão consumida pelos remoinhos no interior das cavidades pode contribuir para o comportamento do escoamento de fluido não-linear através das fraturas da rocha. Verifica-se que este comportamento do fluxo não-linear combina melhor com a equação quadrática de Forechheimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Article  Google Scholar 

  • Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22:121–140

    Google Scholar 

  • Brown GO (2002) Henry Darcy and the making of a law. Water Resour Res 38:1106. doi:10.1029/2001wr000727

    Article  Google Scholar 

  • Chen X, Cao GX, Han AJ, Punyamurtula VK, Liu L, Culligan PJ, Kim T, Qiao Y (2008) Nanoscale fluid transport: size and rate effects. Nano Lett 8:2988–2992

    Article  Google Scholar 

  • Cook AM, Myer LR, Cook NG, Doyle FM (1990) The effect of tortuosity on flow through a natural fracture. In: Hustrulid WA, Johnson GA (eds) Rock mechanics: contributions and challenges—proceedings of the 31st U.S. symposium, Colorado School of Mines, Golden, CO, 18–20 June, 1990, Balkema, Leiden, The Netherlands

  • Forchheimer P (1901) Wasserbewegung durch Boden [Movement of water through soil]. Forschtlft ver D Ing 45:1782–1788

    Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Min Sci Geomech Abstr 15:249–257

    Article  Google Scholar 

  • Gattinoni P, Scesi L (2010) An empirical equation for tunnel inflow assessment: application to sedimentary rock masses. Hydrogeol J 18:1797–1810. doi:10.1007/s10040-010-0674-1

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1987) High velocity flow in porous media. Transp Porous Media 2:521–531. doi:10.1007/bf00192152

    Article  Google Scholar 

  • Izbash SV (1931) O filtracii v kropnozernstom material (Ground water flow in porous media). zv. Nauch-noissled, Inst. Gidrotechniki (NIIG), Leningrad, USSR

  • Jing L, Stephansson O (2007) Fundamentals of discrete element methods for rock engineering: theory and application. Dev. Geotech. Eng. 85, Elsevier, Amsterdam

  • Klimczak C, Schultz R, Parashar R, Reeves D (2010) Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18:851–862. doi:10.1007/s10040-009-0572-6

    Article  Google Scholar 

  • Kockmann N (2006) Micro process engineering: fundamentals, devices, fabrication, and applications. Wiley, Weinheim, Germany

    Google Scholar 

  • Li B, Jiang Y, Koyama T, Jing L, Tanabashi Y (2008) Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. Int J Rock Mech Min Sci 45:362–375

    Article  Google Scholar 

  • Liu HH (2004) A constitutive-relationship model for film flow on rough fracture surfaces. Hydrogeol J 12:237–240. doi:10.1007/s10040-003-0297-x

    Article  Google Scholar 

  • Liu HH, Birkholzer J (2012) On the relationship between water flux and hydraulic gradient for unsaturated and saturated clay. J Hydrol 475:242–247

    Article  Google Scholar 

  • Liu HH, Wei MY, Rutqvist J (2012) Normal-stress dependence of fracture hydraulic properties including two-phase flow properties. Hydrogeol J 1–12. doi: 10.1007/s10040-012-0915-6

  • Lomize GM (1951) Filtratsiya v treshchinovatykh porodakh [Flow in fractured rocks]. Gosenergoizdat, Moscow

    Google Scholar 

  • Lucas Y, Panfilov M, Bues M (2007) High velocity flow through fractured and porous media: the role of flow non-periodicity. Eur J Mech B/Fluids 26:295–303

    Article  Google Scholar 

  • Ma H, Ruth DW (1993) The microscopic analysis of high Forchheimer number flow in porous media. Transp Porous Media 13:139–160. doi:10.1007/bf00654407

    Article  Google Scholar 

  • Murata S, Saito T (2003) Estimation of tortuosity of fluid flow through a single fracture. J Can Pet Technol 42:39–45

    Google Scholar 

  • Murata S, Nakayama G, Saito T (2003) Effect of the contact condition of fracture on its permeability. In: Saito T, Murata S (eds) Environmental rock engineering, Balkema, Leiden, The Netherlands

  • Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38:317–329

    Article  Google Scholar 

  • Plecis A, Chen Y (2007) Fabrication of microfluidic devices based on glass-PDMS-glass technology. Microelectron Eng 84:1265–1269. doi:10.1016/j.mee.2007.01.276

    Article  Google Scholar 

  • Power WL, Durham WB (1997) Topography of natural and artificial fractures in granitic rocks: implications for studies of rock friction and fluid migration. Int J Rock Mech Min Sci 34:979–989

    Article  Google Scholar 

  • Ruth D, Ma H (1992) On the derivation of the Forchheimer equation by means of the averaging theorem. Transp Porous Media 7:255–264. doi:10.1007/bf01063962

    Article  Google Scholar 

  • Rutqvist J, Stephanson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40

    Article  Google Scholar 

  • Scesi L, Gattinoni P (2007) Roughness control on hydraulic conductivity in fractured rocks. Hydrogeol J 15:201–211. doi:10.1007/s10040-006-0076-6

    Article  Google Scholar 

  • Tsang YW (1984) The effect of tortuosity on fluid flow through a single fracture. Water Resour Res 20:1209–1215

    Article  Google Scholar 

  • Tsang YW, Witherspoon PA (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86:9287–9298

    Article  Google Scholar 

  • Ulusay R, Hudson JA (2007) The complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974–2006. ISRM Commission on Testing Methods, Ankara, Turkey

  • Wei L, Hudson JA (1993) A coupled discrete-continuum approach for modelling of water flow in jointed rocks. Géotechnique 43:21–36. doi:10.1680/geot.1993.43.1.21

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Yeo W (2001) Effect of contact obstacles on fluid flow in rock fractures. Geosci J 5:139–143

    Article  Google Scholar 

  • Yeo W, de Freitas MH, Zimmerman RW (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35:1051–1070

    Article  Google Scholar 

  • Zhang Z, Nemcik J (2012) Friction factor of water flow through rough rock fractures. Rock Mech Rock Eng. doi:10.1007/s00603-012-0328-9

    Google Scholar 

  • Zimmerman RW, Chen D-W, Cook NGW (1992) Effect of contact area on the permeability of fractures. J Hydrol 139:79–96

    Article  Google Scholar 

  • Zimmerman RW, Al-Yaarubi A, Pain CC, Grattoni CA (2004) Non-linear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41:21–27

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like thank Alan Grant, Cameron Neilson and Richard Mclean for their assistance in upgrading the triaxial flow testing system. Special thanks also go to Jun Zhang and Ming Li for their assistance during micro flow behaviour tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nemcik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Nemcik, J. & Ma, S. Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study. Hydrogeol J 21, 1717–1729 (2013). https://doi.org/10.1007/s10040-013-1033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1033-9

Keywords

Navigation