Advertisement

Hydrogeology Journal

, Volume 21, Issue 7, pp 1429–1445 | Cite as

Analysis of fault leakage from Leroy underground natural gas storage facility, Wyoming, USA

  • Mingjie Chen
  • Thomas A. Buscheck
  • Jeffrey L. Wagoner
  • Yunwei Sun
  • Joshua A. White
  • Laura Chiaramonte
  • Roger D. Aines
Report

Abstract

Leroy natural-gas storage site is an anticlinal, fault-bounded, aquifer-storage system located in Wyoming, USA. Based on its abundant data, uncontrolled leakage history and subsequent control by the facility operators, a modeling framework was developed for studying reservoir behavior, examining pressure and gas-inventory histories, as well as gas and brine leakage, and evaluating the sensitivity of that behavior to uncertainty about reservoir properties. A three-dimensional model capturing the bounding fault, layered geologic stratigraphy, and surface topography was calibrated by history data of reservoir pressure and gas inventory. The calibrated model predicted gas arrival at the ground surface that was consistent with the timing of observed gas bubbling into a creek. A global sensitivity analysis was performed to examine the parameters influencing fault leakage, and a geomechanical stability analysis was conducted to investigate the likelihood of fault reactivation. In general, it is shown that a discrete leakage pathway is required to explain the observed gas leakage and its subsequent operational control by reducing reservoir pressures. Specifically, the results indicate that fault leakage is a plausible explanation for the observed gas leakage. The results are relevant to other natural-gas storage sites, as well as other subsurface storage applications of buoyant fluids, such as CO2.

Keywords

Natural gas Underground storage Gas leakage Fault USA 

lAnalyse d’une fuite par faille de l’installation de stockage souterrain de gaz natlurel de Leroy, Wyoming, USA

Résumé

Le site de stockage de gaz naturel de Leroy est un système aquifère dans un anticlinal bordé par faille, localisé dans le Wyoming, USA. A partir de données historiques abondantes sur les fuites non contrôlées et des contrôles postérieurs par les opérateurs de l’installation, un modèle conceptuel cadre a été développé pour étudier le comportement du réservoir, en examinant les séries chronologiques de pression et de réserves de gaz, ainsi que les fuites de gaz et de saumure et en évaluant la sensibilité des réponses aux incertitudes sur les propriétés du réservoir. Un modèle tridimensionnel incluant la faille bordière, la stratification géologique et la surface topographique a été calibré avec les données historiques des pressions et réserves de gaz du réservoir. Le modèle calibré prédisant l’arrivée du gaz à la surface du sol est conforme au temps de dégagement gazeux observé dans un ruisseau. Une analyse globale de sensibilité a été effectuée pour examiner les paramètres influençant la fuite par la faille, et une analyse de stabilité géomécanique a été réalisée pour étudier la probabilité de la réactivation de la faille. De manière générale, on a montré qu’un passage distinct est nécessaire pour expliquer la fuite de gaz observée et son contrôle opérationnel ultérieur par la diminution des pressions dans le réservoir. En particulier, les résultats indiquent que la fuite par la faille est une explication plausible de la perte de gaz observée. Les résultats sont applicables à d’autres sites de stockage de gaz naturel, ainsi qu’à des applications de stockage en sub-surface de fluides volatils, tels que le CO2.

Análisis de la filtración de una falla en una instalación subterránea de almacenamiento de gas natural en Leroy, Wyoming, EEUU

Resumen

El sitio de almacenamiento de gas natural de Leroy es un sistema de almacenamiento acuífero anticlinal limitado por falla, localizado en Wyoming, EEUU. Basados en abundantes datos de su historia de filtraciones no controladas y el subsecuente control por los operarios de la instalación se desarrolló un esquema de modelado para estudiar el comportamiento del reservorio, examinando la historia e inventario de las presiones de gas, así como de las filtraciones de gas y de salmuera, y para evaluar la sensibilidad de aquel comportamiento con respecto de las incertidumbres de las propiedades del reservorio. Se calibró un modelo tridimensional que abarca el contorno de la falla, la estratigrafía geológica en capas y la superficie topográfica mediante los datos históricos de la presión y el inventario de gas del reservorio. El modelo calibrado predijo el arribo del gas a la superficie del terreno que fue consistente con el tiempo del burbujeo de gas observado en un arroyo. Se realizó un análisis de sensibilidad global para examinar los parámetros que influyen en la filtración en la falla, y se llevó a cabo un análisis de estabilidad geomecánica para investigar la probabilidad de la reactivación de la falla. En general, se muestra que se requiere una trayectoria discontinua para explicar la filtración de gas observada y su subsecuente control operacional mediante la reducción de las presiones del reservorio. Específicamente, los resultados indican que la filtración es una explicación plausible para la pérdida de gas observada. Los resultados son relevantes respecto de otros sitios de almacenamiento de gas natural, así como para otras aplicaciones de almacenamientos subsuperficiales de fluidos flotantes, tal como el CO2.

美国怀俄明州Leroy地下天然气储藏库的断层泄漏分析

摘要

Leroy地下天然气储藏库是位于美国怀俄明州的一个背斜式的以断层为西边界的含水层储气系统。基于其详细的操作,泄漏及随后的控制历史数据,我们创建了一个模型体系来研究气库状态,模拟压力和库存气量的历史以及气和水的泄漏,并且评估气库状态对地质水文参数的敏感性。其中三维气体运移模型囊括了储气库的边界断层,地层结构和表面地形。储气库的压力和储存量历史数据用来校正这个三维模型。运用校正后的模型预测得到的通过断层泄漏到地表的气量和时间符合观测数据。全局敏感性分析评估了各种气库参数对断层气体泄漏的影响。地质力学稳定性分析对断层重新激活进行了风险评价。我们的研究表明通过断层泄漏的机制解释了Leroy储气库的泄漏以及随后的减压控制历史。本文的研究结果对其他相关地下储气库,比如CO2地质储藏研究有重要的借鉴作用.

Análise da percolação por falha a partir do local de armazenamento subterrâneo de gás natural de Leroy, Wyoming, EUA

Resumo

O local de armazenamento de gás natural de Leroy é um sistema de aquífero-armazém num anticlinal, limitado por falhas, localizado em Wyoming, EUA. Com base em dados abundantes, no historial da percolação não controlada e no subsequente controlo pelos operadores da estrutura, foi desenvolvida uma rede de modelos para estudar o comportamento do reservatório, examinando o inventário dos dados históricos da pressão e do gás, bem como a percolação de gás e salmouras, e avaliando a sensibilidade deste comportamento com a incerteza sobre as propriedades do reservatório. Um modelo tridimensional englobando as falhas de fronteira, a estratigrafia das camadas geológicas e a superfície topográfica foi calibrado com base nos dados históricos da pressão no reservatório e do inventário de gás. O modelo calibrado previu uma chegada de gás à superfície do solo consistente com os tempos observados da presença de bolhas de gás num pequeno ribeiro. Foi realizada uma análise de sensibilidade global para examinar os parâmetros que influenciam a percolação nas falhas e foi efetuada uma análise da estabilidade geomecânica para investigar a probabilidade de reativação das falhas. Em geral, é demostrado que é necessária uma via de percolação discreta para explicar a fuga de gás e o seu subsequente controlo operacional por redução de pressão no reservatório. Especificamente, os resultados indicam que a percolação através da falha é uma explicação plausível para a fuga de gás observada. Os resultados são relevantes para outros locais de armazenamento de gás natural, bem como para outras aplicações de armazenamento subterrâneo de fluidos flutuantes, tais como o CO2.

Notes

Acknowledgements

This work was sponsored by USDOE Fossil Energy, National Energy Technology Laboratory. The authors want to acknowledge and thank Questar Pipeline for furnishing technical information on the Leroy natural gas-storage facility. The authors would like to thank associate editor Fabien Magri, Dr. Stephen Laubach and two anonymous reviewers for their valuable comments. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

References

  1. Araktingi RE, Benefield ME, Bessenyei Z, Coats KH, Tek MR (1984) Leroy Storage Facility, Uinta County, Wyoming: a case history of attempted gas migration control. J Petrol Technol 41(1):132–140Google Scholar
  2. Beckman KL, Determeyer PL, Mowrey EH (1995) Natural gas storage: historical development and expected evolution—December 1994–February 1995. GRI-95/0214. Gas Research Institute, Houston, TXGoogle Scholar
  3. Buscheck TA, Glascoe LG, Lee KH, Gansemer J, Sun Y, Mansoor K (2003) Validation of multiscale thermohydrologic model used for analysis of a proposed repository at Yucca Mountain. J Contam Hydrol 62(3):421–440CrossRefGoogle Scholar
  4. Buscheck TA, Sun Y, Chen M, Hao Y, Wolery TJ, Bourcier WL et al (2012) Active CO2 reservoir management for carbon storage: analysis of operational strategies to relieve pressure buildup and improve injectivity. Int J Greenh Gas Con 6:230–245CrossRefGoogle Scholar
  5. Carrigan CR, Heinle RA, Hudson GB, Nitao JJ, Zucca JJ (1996) Trace gas emissions on geological faults as indicators of underground nuclear testing. Nat 382(6591):528–531CrossRefGoogle Scholar
  6. Carroll SA, Hao Y, Aines RD (2009) Geochemical detection of carbon dioxide in dilute aquifers. Geochem Trans 10:4CrossRefGoogle Scholar
  7. Castle JW, Falta RW, Bruce D, Murdoch I, Foley J, Brame SE, Brooks D (2005) Fracture dissolution of carbonate rock: an innovative process for gas storage. Topical report DE-FC26-02NT41299, Clemson University, Clemson, SCGoogle Scholar
  8. Dynamic graphics (2008) EarthVision 8.0 user manual. Dynamic graphics, Alameda, CAGoogle Scholar
  9. Hao Y, Sun Y, Nitao JJ (2011) Overview of NUFT: a versatile numerical model for simulating flow and reactive transport in porous media. In: Zhang F, Yeh G, Parker JC (eds) Groundwater Reactive Transport Models, Chapter 9, Bentham Science Publishers, p 213-240. doi: 10.2174/97816080530631120101
  10. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2008) The world stress map database release. doi: 10.1594/GFZ.WSM.Rel2008
  11. Hsieh H (2007) Application of the PSUADE tool for sensitivity analysis of an engineering simulation. UCRL-TR-237205, Lawrence Livermore National Laboratory, Livermore, CA Google Scholar
  12. Hsieh PA (1996) Deformation-induced changes in hydraulic head during ground-water withdrawal. Ground Water 34(6):1082–1089CrossRefGoogle Scholar
  13. Johnson JW, Nitao JJ, Knauss KG (2004) Reactive transport modeling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geol Soc Lond Spec Publ 233:107–128Google Scholar
  14. Katz DL, Tec MR (1981) Overview on underground storage of natural gas. J Petrol Technol 33:9430951Google Scholar
  15. Kendell JM (2008) Global gas outlook, US Energy Information. http://www.eia.gov/pub/oil_gas/natural_gas/presentations/2008/globalgas/globalgas.ppt
  16. Lord AS (2009) Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen. SAND2009-5878, Sandia National Laboratory, Albuquerque, NMGoogle Scholar
  17. Moos D, Zoback MD (1990) Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: application to continental Deep Sea Drilling Project and Ocean Drilling Program boreholes. J Geophys Res 95:9305–9325CrossRefGoogle Scholar
  18. Morris JP, Detwiler RL, Friedmann SJ, Vorobiev OY, Hao Y (2011) The large-scale geomechanical and hydrological effect of multiple CO2 injection sites on formation stability. Int J Greenh Gas Con 5:69–74CrossRefGoogle Scholar
  19. Nilson RH, Peterson EW, Lie K (1991) Atmospheric pumping: a mechanism causing vertical transport of contaminated gases through fractured permeable media. J Geophys Res 96(B13):21933–21948CrossRefGoogle Scholar
  20. Nitao JJ (1998) User’s manual for the USNT module of the NUFT code, version 2 (NP-phase, NC-component, thermal), UCRL-MA-130653, Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  21. Nordbotten JM, Kavetski D, Celia MA, Bachu S (2009) Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ Sci Technol 43:743–749CrossRefGoogle Scholar
  22. PB-KBB (1998) Advanced underground gas storage concepts refrigerated-mined cavern storage. Final report. PB-KBB, Houston, TXGoogle Scholar
  23. Preisig M, Prévost JH (2011) Coupled multi-phase thermo-poromechanical effects: case study—CO2 injection at In Salah, Algeria. Int J Greenh Gas Con 5:1055–1064CrossRefGoogle Scholar
  24. Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage form a geologic storage reservoir. Environ Geol 54:1677–1686CrossRefGoogle Scholar
  25. Reese DL (1978) Geologic report: Leroy Gas Storage Field, Uinta County. Mountain Fuel Resources, Salt Lake City, UTGoogle Scholar
  26. Reidel SP, Johnson VG, Spane FA (2003) Natural gas storage in aasalt aquifers of the Columbia Basin: a guide to site characterization. Pacific Northwest National Laboratory, Richland, WA, pp 25–29Google Scholar
  27. Rinaldi AP, Rutqvist J (2013) Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, In Salah, Algeria. Int J Greenh Gas Con 12:155–167CrossRefGoogle Scholar
  28. Rocky Mountain Petroleum Consultants (1981) Performance study of Leroy gas storage project for Mountain Fuel Supply Company, Unita County, Wyoming. Rocky Mountain Petroleum Consultant, Littleton, COGoogle Scholar
  29. Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes with CO2 injection into a brine formation. Environ Geol 42:296–305CrossRefGoogle Scholar
  30. Sofregaz US (1998) Leroy natural gas storage history matching. Prepared for Questar Pipeline, Salt Lake City, UTGoogle Scholar
  31. Sun Y, Tong C, Duan Q, Buscheck TA, Blink JA (2012) Combining simulation and emulation for calibrating sequentially reactive transport systems. Transp Porous Media 92(2):509–526CrossRefGoogle Scholar
  32. Tong C (2009) PSUADE user’s manual (version 1.2.0). LLNL-SM-407882, Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  33. Vilarrasa V, Carrera J, Olivella S (2013) Hydromechanical characterization of CO2 injection sites. Int J Greenh Gas Con. doi: 10.1016/j.ijggc.2012.11.014 Google Scholar
  34. Wemhoff AP, Hsieh H (2007) TNT Prout-Tompkins kinetics calibration with PSUADE. UCRL-TR-230194, Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  35. West MW (1992) An integrated model for seismogenesis in the intermountain seismic belt. Bull Seismol Soc Am 82(3):1350–1372Google Scholar
  36. Zoback MD, Mastin L, Barton C (1987) In situ stress measurements in deep boreholes using hydraulic fracturing, wellbore breakouts and Stonely wave polarization. In: Stefansson O (ed) Rock stress and rock stress measurements. Centrek, Lulea, Sweden, pp 289–299Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mingjie Chen
    • 1
  • Thomas A. Buscheck
    • 1
  • Jeffrey L. Wagoner
    • 1
  • Yunwei Sun
    • 1
  • Joshua A. White
    • 1
  • Laura Chiaramonte
    • 1
  • Roger D. Aines
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations