Skip to main content
Log in

Impact of groundwater withdrawals on the interaction of multi-layered aquifers in the Viterbo geothermal area (central Italy)

Impact des prélèvements d’eau souterraine sur l’interaction avec un complexe d’aquifères dans la zone géothermique de Viterbo (Centre de l’Italie)

Impacto de las extracciones de agua subterránea en la interacción de acuíferos multicapa en el área geotermal de Viterbo (Italia Central)

地下水开采对意大利中部Viterbo地热田多层不同水质含水层的影响

Impacte das extrações de água subterrânea na interação de aquíferos multicamada na área geotérmica de Viterbo (Itália central)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The impact of groundwater withdrawals on the interaction between multi-layered aquifers with different water qualities in the Viterbo geothermal area (central Italy) was studied. In this area, deep thermal waters are used to supply thermal spas and public pools. A shallow overlying aquifer carries cold and fresh water, used for irrigation and the local drinking-water supply. Starting with a conceptual hydrogeological model, two simplified numerical models were implemented: a steady-state flow model of the entire groundwater system, and a steady-state flow and heat transport model of a representative area, which included complex interactions between the aquifers. The impact of increased withdrawals associated with potential future development of the thermal aquifer must be considered in terms of the water temperature of the existing thermal sources. However, withdrawals from the shallow aquifer might also influence the discharge of thermal sources and quality of the water withdrawn from the shallow wells. The exploitation of the two aquifers is dependent on the hydraulic conductivity and thickness of the intervening aquitard, which maintains the delicate hydrogeological equilibrium. Effective methods to control this equilibrium include monitoring the vertical gradient between the two aquifers and the residual discharge of natural thermal springs.

Résumé

L’impact des prélèvements d’eau souterraine sur l’interaction entre un complexe d’aquifères comprenant différentes qualités d’eau dans la zone géothermique de Viterbo (Centre de l’Italie) a été étudié. Dans cette zone, les eaux thermales profondes sont utilisées pour alimenter des thermes et des piscines publiques. Un aquifère supérieur peu profond transporte des eaux douces froides, utilisées pour l’irrigation et pour l’alimentation en eau potable. A partir d’un modèle conceptuel hydrogéologique, deux modèles numériques simplifiés ont été mises en œuvre : un modèle d’écoulements en régime permanent pour la totalité du système aquifère, et un modèle en régime permanent pour les flux et le transport de chaleur d’une zone représentative, comprenant les interactions complexes entre les aquifères. L’impact de l’augmentation des prélèvements associée au développement potentiel futur de l’aquifère thermal doit être considéré en termes de température des sources thermales existantes. Cependant, les prélèvements de l’aquifère superficiel peut aussi influencer le débit des sources thermales et la qualité de l’eau prélevée au niveau des puits peu profonds. L’exploitation des deux aquifères est dépendante de la conductivité hydraulique et de l’épaisseur de l’aquitard intervenant, qui maintient l’équilibre hydrogéologique fragile. Des méthodes efficaces de contrôle de cet aquifère comprend le suivi du gradient vertical entre les deux aquifères et le débit résiduel des sources thermales naturelles.

Resumen

Se estudió el impacto de las extracciones de agua subterránea en la interacción entre acuíferos multicapas con diferentes calidades del agua en el área geotermal de Viterbo (Italia Central). En esta área, las aguas termales profundas son usadas para el abastecimiento de spas y natatorios públicos termales. Un acuífero somero suprayacente transporta agua fría y dulce, usada para irrigación y el abastecimiento local de agua potable. Comenzando con un modelo hidrogeológico conceptual, se implementaron dos modelos numéricos simplificados: un modelo de flujo en estado estacionario sobre la totalidad del sistema de agua subterránea, y un modelo en estado transitorio de flujo y transporte de calor de un área representativa, que incluyó las complejas interacciones entre los acuíferos. El impacto de las crecientes extracciones asociadas con un futuro desarrollo potencial del acuífero termal debe ser considerado en función de la temperatura del agua de las fuentes termales existentes. Sin embargo, las extracciones provenientes del acuífero somero podrían también influenciar la descarga de las fuentes termales y la calidad del agua extraída desde los pozos someros. La explotación de los dos acuíferos es depende de la conductividad hidráulica y espesor del acuitardo interviniente, el cual mantiene el delicado equilibrio hidrogeológico. Los métodos efectivos para controlar este equilibrio incluyen el monitoreo del gradiente vertical entre los dos acuíferos y la descarga residual de los manantiales naturales termales.

摘要

本文研究了地下水开采对viterbo地热区不同水质多层含水层之间相互作用的影响。在这一地区,深层地热水主要用于当地的温泉洗浴和公共泳池。上覆浅层含水层中的冷淡水主要用于灌溉和当地的饮用水供水。基于水文地质概念模型,两种简化的数值模型应用于本次研究,分别为整个地下水系统的稳定流模型和包含含水层间复杂相互作用的典型区稳定流和热运移模型。与潜在深层热含水层未来开发有关的地下水开采量增加影响必须从现有热源中地下水温度来考虑。然而,浅层地下水开采也可能影响热源的排泄量及浅层井中水的水质。上、下含水层的开采量主要取决于能使两个含水层形成微妙平衡的水文地质参数,即渗透系数和含水层间弱透水层的厚度。有效控制上述平衡的办法包括监测含水层间垂向水力梯度和天然热泉的剩余排泄量。

Resumo

Foi estudado o impacte das extrações de água subterrânea na interação entre aquíferos multicamada com diferentes qualidades de água na área geotérmica de Viterbo (Itália central). Nesta área, águas termais profundas são usadas para abastecimento de termas e piscinas públicas. Um aquífero livre superficial com água doce a temperatura normal é usado para rega e para o abastecimento doméstico local. Começando por um modelo hidrogeológico concetual, foram implementados dois modelos numéricos simplificados: um modelo de fluxo estacionário de todo o sistema hidrogeológico e um modelo de fluxo estacionário e de transporte de calor de uma área representativa que incluiu interações complexas entre os aquíferos. O impacte do incremento das extrações, associado ao potencial desenvolvimento futuro do aquífero termal, deve ser considerado em termos da temperatura da água das fontes termais existentes. No entanto, as extrações a partir do aquífero livre podem também influenciar a descarga das fontes termais e a qualidade da água extraída dos poços superficiais. A exploração dos dois aquíferos está dependente da condutividade hidráulica e da espessura do aquitardo, o qual mantém o delicado equilíbrio hidrogeológico. Métodos efetivos de controlo deste equilíbrio incluem a monitorização do gradiente vertical entre os dois aquíferos e da descarga residual das nascentes termais naturais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderman ER, Hill MC, Poeter EP (1996) Two-dimensional advective transport in ground-water flow parameter estimation. Ground Water 34:1001–1009

    Article  Google Scholar 

  • Angelone M, Cremisini C, Piscopo V, Proposito M, Spaziani F (2009) Influence of hydrostratigraphy and structural setting on the arsenic occurrence in groundwater of the Cimino-Vico volcanic area (central Italy). Hydrogeol J 17:901–914

    Article  Google Scholar 

  • Atkinson TC, Davison RM (2002) Is the water still hot? Sustainability and the thermal springs at Bath, England. In: Hiscock KM et al. (eds) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:15–40

    Article  Google Scholar 

  • Baiocchi A, Lotti F (2012) Analysis of the interactions between overlapping aquifers in the Viterbo hydrothermal area (central Italy) from pumping tests. In: Flowpath 2012, Bologna, Italy, 20–22 June 2012, 2 pp. Available at http://nuke.iahitaly.it/Flowpath2012/tabid/487/Default.aspx. Accessed 5 Jan 2013

  • Baiocchi A, Dragoni W, Lotti F, Luzzi G, Piscopo V (2006) Outline of the hydrogeology of the Cimino and Vico volcanic area and of the interaction between groundwater and Lake Vico (Lazio Region, central Italy). Boll Soc Geol Ital 125:187–202

    Google Scholar 

  • Baiocchi A, Lotti F, Piscopo V (2012) Conceptual hydrogeological model and groundwater resource estimation in a complex hydrothermal area: the case of the Viterbo geothermal area (central Italy). J Water Resour Protect 4:231–247

    Article  Google Scholar 

  • Baldi P, Ferrara GC, Masselli L, Pieretti G (1973) Hydrogeochemistry of the region between Monte Amiata and Rome. Geothermics 2:124–141

    Article  Google Scholar 

  • Baldi P, Decandia FA, Lazzarotto A, Calamai A (1974) Studio geologico del substrato della copertura vulcanica laziale nella zona dei laghi di Bolsena, Vico e Bracciano [Geological study of the volcanics substratum in the Latium Region around the lakes Bolsena, Vico and Bracciano]. Mem Soc Geol Ital 13:575–606

    Google Scholar 

  • Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Iaccarino S, Laurenzi MA, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Descrit Carta Geol Ital 49:77–134

    Google Scholar 

  • Bertagnini A, Sbrana A (1986) Il vulcano di Vico: stratigrafia del complesso vulcanico e sequenze eruttive delle formazioni piroclastiche [The Vico Volcano: stratigraphy of the volcanic complex and sequence of the eruptions of the pyroclastic units]. Mem Soc Geol Ital 35:699–713

    Google Scholar 

  • Bertani R (2010) Geothermal power generation in the world: 2005–2010 update report. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010

  • Bertrand G, Celle-Jeanton H, Huneau F, Loock S, Renac C (2010) Identification of different groundwater flowpaths within volcanic aquifers using natural tracers for the evaluation of the influence of lava flows morphology (Arghat basin, Chaîne des Puys, France). J Hydrol 391:223–234

    Article  Google Scholar 

  • Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia centrale [Hydrogeological scheme of central Italy]. Mem Soc Geol Ital 35:991–1012

    Google Scholar 

  • Buonasorte G, Fiordelisi A, Pandeli E, Rossi U, Sollevanti E (1987) Stratigraphic correlations and structural setting of the pre-neoautochtonous sedimentary sequences of northern Latium. Period Mineral 56:111–122

    Google Scholar 

  • Buonasorte G, Cameli GM, Fiordelisi A, Parotto M, Perticone I (1995) Results of geothermal exploration in Central Italy (Latium-Campania). Proceedings of the World Geothermal Congress, vol 2, Florence, Italy, May 1955, pp 1293–1298

  • Calamai A, Cataldi R, Locardi E, Praturlon A (1976) Distribuzione delle anomalie geotermiche nella fascia preappenninica tosco-laziale (Italia) [Distribution of the geothermal anomalies in the pre-Apennine belt of Tuscany and Latium (Italy)]. In: Simposio International sobre Energia Geotérmica en America Latina, Ciudad de Guatemala, 16–23 October 1976, pp 189–229

  • Camponeschi B, Nolasco F (1984) Le risorse naturali della Regione Lazio: 2. Monti Cimini e Tuscia Romana [The natural resources of the Latium region: 2. Mounts Cimini and Roman Tuscia]. Regione Lazio, Rome

    Google Scholar 

  • Capelli G, Mazza R, Gazzetti C (2005) Strumenti e strategie per la tutela e l’uso compatibile della risorsa idrica del Lazio: gli acquiferi vulcanici [Tools and strategies for safeguarding and sustainable management of water resources in the Latium region: the volcanic aquifers]. Pitagora, Bologna, Italy

    Google Scholar 

  • Cataldi R, Mongelli F, Squarci P, Taffi L, Zito G, Calore C (1995) Geothermal ranking of Italian territory. Geothermics 24:115–129

    Article  Google Scholar 

  • Cataldi R, Lazzarotto A, Passaleva GC, Meccheri M (2010) Sostenibilità ed utilizzazione integrata del calore geotermico per un maggiore sviluppo del termalismo in Italia [Sustainability and conjuctive use of geothermal heat flux for spa development in Italy]. Geothermexpo 2010, Geothermal Energy Congress and Exhibition, Ferrara, 21–23 Sept 2010

  • Chiang W-H, Kinzelbach W (2001) 3D-groundwater modeling with PMWIN, a simulation system for modeling groundwater flow and pollution. Springer, Berlin

    Google Scholar 

  • Chiocchini U, Castaldi F, Barbieri M, Eulilli V (2010) A stratigraphic and geophysical approach to studying the deep-circulating groundwater and thermal springs, and their recharge areas, in Cimini Mountains-Viterbo area, central Italy. Hydrogeol J 18:1319–1341

    Article  Google Scholar 

  • Cimarelli C, De Rita D (2006) Structural evolution of the Pleistocene Cimini trachytic volcanic complex (central Italy). Bull Volcanol 68:538–548

    Article  Google Scholar 

  • Cruz JV, Silva MO (2001) Hydrogeologic framework of the Pico Island (Azores, Portugal). Hydrogeol J 9:177–189

    Article  Google Scholar 

  • Custodio E (1989) Groundwater characteristics and problems in volcanic rock terrains. In: Isotope Techniques on the study of the hydrology of fractured and fissured rocks. IAEA, STI/PUB 790, Vienna, pp 87–137

  • Custodio E (2007) Groundwater in volcanic rocks. In: Krasny J, Sharp JM (eds) Groundwater in fractured rocks. Taylor andFrancis, London, pp 95–104

  • Della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat flow distribution. In: Vai GB, Martini P (eds) Anatomy of an orogen, the Apennines and adjacent Mediterranean Basin. Kluwer, Dordrecht, The Netherlands, pp 65–76

    Google Scholar 

  • Diersch HJG (2002) FEFLOW. Finite element subsurface flow and transport simulation system. Reference manual, WASY, Berlin

    Google Scholar 

  • Diersch HJG (2005) Treatment of free surfaces in 2D and 3D groundwater modeling. FEFLOW, White Papers vol 1, WASY, Berlin, pp 67–100

    Google Scholar 

  • Diersch HJG, Kolditz O (1998) Coupled groundwater flow and transport: thermohaline and 3D convection systems. Adv Water Resour 21:401–425

    Article  Google Scholar 

  • Diersch HJG, Perrochet P (1999) On the primary variable switching technique for simulating unsaturated-saturated flows. Adv Water Resour 23:271–301

    Article  Google Scholar 

  • Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. User’s manual, Watermark, Brisbane, Australia

    Google Scholar 

  • Duchi V, Minissale A (1995) Distribuzione delle manifestazioni gassose nel settore peritirrenico tosco-laziale e loro interazione con gli acquiferi superficiali [Distribution of gas emissions in the peri-Tyrrhenian belt of Tuscany and Latium and their interaction with the shallow aquifers]. Boll Soc Geol Ital 114:337–351

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Funiciello R, Locardi E, Lombardi G, Parotto M (1977) The main volcanic groups of Latium: relations between structural evolution and petrogenesis. Geol Romana 15:279–300

    Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US GEOL SURV Open-File Rep 2000–92

  • Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression. US GEOL SURV Open-File Rep 91–484

  • Hill MC, Tiedeman CR (2007) Effective groundwater model calibration. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Hill MC, Cooley RL, Pollock DW (1998) A controlled experiment in ground-water flow model calibration using non linear regression. Ground Water 36:520–535

    Article  Google Scholar 

  • Huttrer GW (2001) The status of world geothermal power generation 1995–2000. Geothermics 30:1–27

    Article  Google Scholar 

  • Kalf RP, Woolley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13:295–312

    Article  Google Scholar 

  • La Torre P, Nannini R, Sollevanti F (1981) Geothermal exploration in central Italy: geophysical survey in Cimini Range area. In: European Association of Exploration Geophysicists, 43th Meeting, Venice, 26–29 May 1981

  • Lardini D, Nappi G (1987) I cicli eruttivi del complesso vulcanico cimino [The eruptive phases of the Cimino Volcanic Complex]. Rend Soc Ital Mineral Petrol 42:141–153

    Google Scholar 

  • Legislative Decree (2006) Decreto Legislativo del 3-4-2006 n 152. Norme in materia ambientale [Legislative Decree 152/2006. Environmental regulations]. Gazzetta Ufficiale della Repubblica Italiana, 14 April 2006, no. 88, Istituto Poligrafico e Zecca dello Stato, Rome

  • Legislative Decree (2009) Decreto Legislativo del 16-3-2009 n 30. Attuazione della direttiva 2006/118/CE relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento [Legislative Decree 30/2009. Implementation of Directive 2006/118/EC on the protection of groundwater against pollution and deterioration]. Gazzetta Ufficiale della Repubblica Italiana, 4 April 2009, no. 79, Istituto Poligrafico e Zecca dello Stato, Rome

  • Locardi E (1965) Tipi di ignimbrite di magmi mediterranei. Le ignimbriti del vulcano di [Vico types of ignimbrites of Mediterranean magmas: the ignimbrites of the Vico Volcano]. Atti Soc Toscana Sci Natural 72:53–173

    Google Scholar 

  • Lund JW (1996) Balneological use of thermal and mineral waters in the USA. Geothermics 25:103–147

    Article  Google Scholar 

  • Lund JW, Freeston DH, Boyd TL (2005) World-wide direct utilization of geothermal energy 2005. Geothermics 34:691–727

    Article  Google Scholar 

  • Mattias PP, Ventriglia V (1970) La regione vulcanica dei Monti Cimini e Sabatini [The volcanic region of the Cimini and Sabatini Mountains]. Mem Soc Geol Ital 9:331–384

    Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations of the US Geological Survey, Book 6, Chap A1, pp 83–375

    Google Scholar 

  • Mercer JW, Pinder GF (1974) Finite element analysis of hydrothermal systems. In: Oden JT (ed) Finite element methods in flow problemsanalysis of hydrothermal systems. University of Alabama Press, Huntsville, AL, pp 401–414, Proc 1st Symp, Swansea, Wales

  • Minissale A, Duchi V (1988) Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy. J Volcanol Geotherm Res 35:237–252

    Article  Google Scholar 

  • Minissale A, Kerrick DM, Magro G, Murell MT, Paladini M, Rihs S, Sturchio NC, Tassi F, Vaselli O (2002) Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet Sci Lett 203:709–728

    Article  Google Scholar 

  • Mongelli F, Zito G, Ciaranfi N, Pieri P (1989) Interpretation of heat flow density of the Apennine Chain, Italy. Tectonophysics 164:267–280

    Article  Google Scholar 

  • Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

    Google Scholar 

  • Piscopo V, Allocca V, Formica F (2000) Sustainable management of groundwater in Neapolitan volcanic areas, Italy. In: Sililo O et al (eds) Groundwater: past achievements and future challenge. Balkema, Rotterdam, The Netherlands, pp 1011–1016

    Google Scholar 

  • Piscopo V, Barbieri M, Monetti V, Pagano G, Pistoni S, Ruggi E, Stanzione D (2006) Hydrogeology of thermal waters in Viterbo area, central Italy. Hydrogeol J 14:1508–1521

    Article  Google Scholar 

  • Piscopo V, Baiocchi A, Bicorgna S, Lotti F (2008) Hydrogeological support for estimation of the sustainable well yield in volcanic rocks: some examples from central and southern Italy. In: Proc of 36th IAH Congress, Toyama, Japan, 26 October–1 November 2008, pp 1652–1666

  • Royal Decree (1919) Regolamento per l’esecuzione del Capo IV della Legge 16 luglio 1916 n 947, contenente disposizioni sulle acque minerali e gli stabilimenti termali, idroterapici e di cure fisiche e affini [Regulations for the implementation of Chapter IV of the Act No. 947 July 16, 1916, concerning regulation of mineral waters and spas, hydrotherapy and medical care and related]. Gazzetta Ufficiale del Regno d’Italia, 25 October 1919, no. 254, Istituto Poligrafico dello Stato, Rome

  • Sollevanti F (1983) Geologic, volcanologic and tectonic setting of the Vico-Cimino area, Italy. J Volcanol Geotherm Res 17:203–217

    Article  Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least-square method in evaluation of the relationship between dispersivity and field scale. Ground Water 33:905–908

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Regione Lazio - Direzione Regionale Attività Produttive e Rifiuti, in the persons of Dr Mario Marotta, Eng Luigi Minicillo and Dr Patrizia Refrigeri, and Ministero dell’Istruzione, dell’Università e della Ricerca (Project PRIN-2008 – 2008YYZKEE_02) for their financial support. The authors appreciate the review and suggestions made by Sue Duncan (Technical Editorial Advisor), Fabien Magri (Associate Editor), Micol Todesco and one anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Piscopo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baiocchi, A., Lotti, F. & Piscopo, V. Impact of groundwater withdrawals on the interaction of multi-layered aquifers in the Viterbo geothermal area (central Italy). Hydrogeol J 21, 1339–1353 (2013). https://doi.org/10.1007/s10040-013-1000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1000-5

Keywords

Navigation