Skip to main content
Log in

Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA

Comparaison de la distribution statistique de l’âge des eaux estimée avec des traceurs environnementaux, en utilisant des modèles numériques de mélange binaire et le modèle numérique d’un karst fracturé et plissé : Vallée de Shenandoah, Virginie, et Ouest Virginie, USA

Comparación de distribuciones de edad estimadas a partir de trazadores ambientales usando dilución binaria y modelos numéricos en karst fracturados y plegados: Shenandoah Valley de Virginia y West Virginia, EEUU

基于二维稀释的环境示踪剂和断裂褶皱岩溶数值模拟的年龄分布比较:美国弗吉尼亚州和西弗吉尼亚州的谢南多厄河谷

Comparação das distribuições de idade estimadas por traçadores ambientais usando modelos binários de diluição e numéricos em karsts fraturados e dobrados: Vale de Shenandoah, Virginia e West Virginia, EUA

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Measured concentrations of environmental tracers in spring discharge from a karst aquifer in the Shenandoah Valley, USA, were used to refine a numerical groundwater flow model. The karst aquifer is folded and faulted carbonate bedrock dominated by diffuse flow along fractures. The numerical model represented bedrock structure and discrete features (fault zones and springs). Concentrations of 3H, 3He, 4He, and CFC-113 in spring discharge were interpreted as binary dilutions of young (0–8  years) water and old (tracer-free) water. Simulated mixtures of groundwater are derived from young water flowing along shallow paths, with the addition of old water flowing along deeper paths through the model domain that discharge to springs along fault zones. The simulated median age of young water discharged from springs (5.7  years) is slightly older than the median age estimated from 3H/3He data (4.4  years). The numerical model predicted a fraction of old water in spring discharge (0.07) that was half that determined by the binary-dilution model using the 3H/3He apparent age and 3H and CFC-113 data (0.14). This difference suggests that faults and lineaments are more numerous or extensive than those mapped and included in the numerical model.

Résumé

La concentration des traceurs environnementaux mesurée à l’émergence des sources issues d’un aquifère karstique de la Vallée de Shenandoah, USA, a été utilisée pour affiner un modèle d’écoulement souterrain numérique. L’aquifère karstique est un massif calcaire plissé et fracturé, où domine un écoulement diffus le long des fractures. Le modèle numérique représente la structure d’ensemble du massif et les paramètres discontinus (zones de failles et sources). Les concentrations en 3H, 3He, 4He et CFC-113 à l’émergence de la source ont été interprétées comme des mélanges binaires d’une eau jeune (0–8 ans) et d’une eau ancienne (dépourvue de traceur). Les mélanges d’eau souterraine simulés proviennent de l’addition d’une eau jeune suivant un cheminement proche de la surface et d’une eau ancienne qui emprunte un cheminement profond à travers le domaine couvert par le modèle et qui se décharge par des sources le long de la zone de failles. L’âge médian simulé des eaux jeunes émergeant aux sources (5.7 ans) est légèrement plus élevé que celui estimé d’après les données 3H/3He (4.4 ans). Le modèle numérique prédit une fraction d’eau ancienne à l’émergence de la source (0.07) qui est la moitié de celle déterminée par le modèle de mélange binaire utilisant l’âge apparent 3H/3He et les données de 3H et de CFC-113 (0.14). Cette différence suggère que les failles et les linéaments sont plus nombreux ou plus étendus que ceux cartographiés et intégrés au modèle numérique.

Resumen

Se usan las concentraciones medidas de trazadores ambientales en manantiales de descarga de un acuífero kárstico en el Shenandoah Valley, EEUU, para refinar un modelo numérico de flujo de agua subterránea. El acuífero kárstico es un basamento carbonático plegado y fallado dominado por flujo difuso a lo largo de las fracturas. El modelo numérico representó las estructuras del basamento y rasgos discretos (zonas de fallas y manantiales). Se interpretaron las concentraciones de 3H, 3He, 4He, y CFC-113 en la descarga de manantiales como diluciones binarias de agua joven (0–8 años) y de agua vieja (libre de trazadores). Las mezclas simuladas de agua subterránea son obtenidas a partir del agua joven que fluye a lo largo de trayectorias someras, con el agregado de agua vieja que fluye a lo largo de trayectorias más profundas a través del dominio del modelo que descarga en manantiales a lo largo de las zonas de falla. La edad mediana simulada del agua joven descargada de los manantiales (5.7 años) es ligeramente más vieja que la edad mediana estimada a partir de datos de 3H/3He (4.4 años). El modelo numérico predijo una fracción del agua vieja en la descarga de manantiales (0.07) que fue la mitad que la determinada por el modelo de dilución binario usando la edad aparente 3H/3He y los datos de 3H y CFC-113 (0.14). Esta diferencia sugiere que las fallas y lineamientos son más numerosos o extensos que aquellos mapeados e incluidos en el modelo numérico.

摘要

位于美国谢南多厄河谷的出露泉的环境示踪剂实测结果用于修正地下水流数值模型。岩溶含水层碳酸盐基岩的褶皱和断裂主要受断裂带的延伸方向所控制。数值模拟体现了基岩的结构和离散特点(断裂带和出露泉)。泉水流中的3H, 3He,4He和CFC-113的浓度可以理解为二维稀释的年轻的水(0–8年)和年龄较老的水(无示踪剂)。地下水模拟混合物为来自浅水层年轻的水混合深水层中年龄较老的水,通过沿断裂带出露泉的区域模型得出。泉水流(5.7年)中模拟的年轻水中值年龄比3H/3He(4.4 years)测得年龄稍老。数值模拟预测了一部分(0.07)年龄较老的泉水流,是3H/3He显示年龄、3H和 CFC-113数据通过二维稀释模型计算后结果的一半。这样的结果差异表明,断层和轮廓比数值模拟中反映和包含的更为大量和广泛。

Resumo

Dados de concentração de traçadores ambientais medidos na descarga de uma nascente de um aquífero cársico, no Vale do Shenandoah, EUA, foram usados para refinar um modelo numérico de fluxo de águas subterrâneas. O aquífero cársico é constituído por bedrock dobrado e fraturado e é dominado por fluxo difuso ao longo de fraturas. O modelo numérico representa formações do bedrock e elementos singulares (zonas de falhas e nascentes). As concentrações de 3H, 3He, 4He e de CFC-113 na descarga da nascente foram interpretadas como diluições binárias de água jovem (0–8 anos) e água antiga (livre de traçadores). Misturas simuladas de água subterrânea são derivadas de água jovem que flúi ao longo de caminhos subsuperficiais, com a adição de água mais antiga que flúi através de caminhos mais profundos, através do domínio do modelo que descarrega nas nascentes ao longo das falhas. A mediana das idades das águas recentes descarregadas nas nascentes (5.7 anos) é ligeiramente mais antiga do que a mediana das idades estimadas pela relação 3H/3He (4.4 anos). O modelo numérico previu a fração de água antiga na nascente (0.07), a qual é metade da determinada pelo modelo de diluição binário utilizando a idade aparente 3H/3He e os dados de 3H e CFC-113 (0.14). Esta diferença sugere que as falhas e lineamentos são mais numerosos ou extensos do que aqueles que se encontram mapeados e incluídos no modelo numérico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anderman ER, Kipp KL, Hill MC, Valstar J, Neupauer RM (2002) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: documentation of the Model-Layer Variable-Direction Horizontal Anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) Package. US Geol Surv Open-File Rep 02–409

  • Beaudoin G, Therrien R, Savard C (2006) 3D numerical modeling of fluid flow in the Val-d’Or orogenic gold district: major crustal shear zones drain fluids from overpressured vein fields. Miner Deposita 41:82–98

    Article  Google Scholar 

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152

    Article  Google Scholar 

  • Blessent D, Therrien R, Gable CW (2011) Large-scale simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock. Adv Water Resour 34:1539–1552

    Article  Google Scholar 

  • Butts C (1940) Geology of the Appalachian Valley in Virginia. Part 1, Geologic text and illustrations. Virginia Geol Surv Bull 52

  • Cady RC (1936) Ground-water resources of the Shenandoah Valley, Virginia. Virginia Geol Surv Bull 45

  • Cook PG, Love AJ, Robinson NI, Simmons CT (2005) Groundwater ages in fractured rock aquifers. J Hydrol 308:284–301

    Article  Google Scholar 

  • Davis JH, Katz BG (2007) Hydrogeologic investigation, water chemistry analysis, and model delineation of contributing areas for City of Tallahassee public-supply wells, Tallahassee, Florida. US Geol Surv Sci Invest Rep 2007-5070

  • Dean SL, Kulander BR, Lessing P, Barker D (1987) Geology of the Hedgesville, Keedysville, Martinsburg, Shepherdstown, and Williamsport quadrangles, Berkeley and Jefferson Counties, West Virginia. West Virginia Geol Econ Surv Map-WV31. scale 1:24,000

  • Dean SL, Lessing P, Kulander BR, Barker D (1990) Geology of the Berryville, Charles Town, Harpers Ferry, Middleway, and Round Hill quadrangles, Berkeley and Jefferson Counties, West Virginia. West Virginia Geol Econ Surv Map-WV35. scale 1:24,000

  • Doctor DH, Orndorff W, Orndorff RC (2009) Overview of the Shenandoah Valley karst of Virginia and West Virginia. In: Stafford KW, Fratesi B (eds) Guidebook for excursion No. 1, coast to coast excursion, eastern segment, July 27 to August 5, 2009 excursion guidebook for the Fifteenth International Congress of Speleology of the International Union of Speleology. Greyhound, Huntsville, Al, pp 84–96

    Google Scholar 

  • Doctor DH, Farrar NC, Herman JS (2011) Interaction between shallow and deep groundwater components at Fay Spring in the northern Shenandoah Valley karst. USGS Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26–29. US Geol Surv Sci Invest Rep 2011-5031:25–34

  • Eberts SM, Bohlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20:263–282

    Article  Google Scholar 

  • Einsiedl F, Radke M, Maloszewski P (2010) Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. J Contam Hydrol 117:26–36

    Article  Google Scholar 

  • Hanson RT, Kauffman LJ, Hill MC, Dickinson JE, Mehl SW (2012) Documentation of the MODPATH observation process, with support for local grid refinement and four types of observations and predictions. US Geol Surv Tech Methods 6–A42

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00–92

  • Harlow Jr GE, Orndorff RC, Nelms DL, Weary DJ, Moberg RM (2005) Hydrogeology and ground-water availability in the carbonate aquifer system of Frederick County, Virginia. US Geol Surv Sci Invest Rep 2005-5161

  • Hatcher Jr RD, Thomas WA, Geiser PA, Snoke AW, Mosher S, Wiltschko DV (1989) Alleghanian orogeny. In: Hatcher RD Jr, Thomas WA, Viele GW (eds) The Appalachian-Ouachita Orogen in the United States: the geology of North America, vol F-2. Geological Society of America, Boulder, CO

  • Hobba Jr WA, Fisher DW, Pearson FJ Jr, Chemerys JC (1979) Hydrology and geochemistry of thermal springs of the Appalachians. US Geol Surv Prof Pap 1044-E

  • Hubbard DA Jr, Giannini WF, Lorah MM (1985) Travertine-marl deposits of the Valley and Ridge Province of Virginia: a preliminary report. Virginia Miner 31(1):1–16

    Google Scholar 

  • International Atomic Energy Agency (IAEA) (2006) Use of chlorofluorocarbons in hydrology: a guidebook. STI/PUB/1238. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1238_web.pdf. Accessed on 3 April 2013

  • International Atomic Energy Agency (IAEA) (2012) Isotope Hydrology Section, Global Network of Isotopes in Precipitation (GNIP), IAEA, Vienna. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html. Accessed on 3 April 2013

  • Jones WK, Deike GH, III (1981) A hydrogeologic study of the watershed of the National Fisheries Center at Leetown, West Virginia. Report prepared for the US Fish and Wildlife Service by Environmental Data, Frankford, WVA, 84 pp

  • Jones WK (1991) The carbonate aquifer of the Northern Shenandoah Valley of Virginia and West Virginia. In: Kastning EH, Kastning KM (eds) Proceedings of the Appalachian Karst Symposium, Radford VA, 23–26 March 1991, pp 217–222

  • Jones WK (1997) Karst hydrology atlas of West Virginia. Special Publ. no. 4, Karst Waters Institute, Charles Town, West VA

  • Kozar MD, Weary DJ (2009) Hydrogeology and ground-water flow in the Opequon Creek watershed area, Virginia and West Virginia. US Geol Surv Sci Invest Rep 2009-5153

  • Kozar MD, McCoy KJ, Weary DJ, Field MS, Pierce HA, Schill WB, Young JA (2007) Hydrogeology and water quality of the Leetown Area, West Virginia. US Geol Surv Open-File Rep 2007-1358

  • Lindgren RJ, Houston NA, Musgrove M, Fahlquist LS, Kauffman LJ (2011) Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas. US Geol Surv Sci Invest Rep 2011-5149

  • Long AJ, Putnam LD (2009) Age-distribution estimation for karst groundwater: issues of parameterization and complexity in inverse modeling by convolution. J Hydrol 376:579–588

    Article  Google Scholar 

  • McCoy KJ, Kozar MD (2008) Use of sinkholes and specific capacity distributions to assess vertical gradients in a karst aquifer. Environ Geol 54:921–935

    Article  Google Scholar 

  • McCoy KJ, Podwysocki MH, Crider EA, Weary DJ (2005a) Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia. US Geol Surv Open-File Rep 2005-1040

  • McCoy KJ, Podwysocki MH, Crider EA, Weary DJ (2005b) Fracture trace map and single-well aquifer test results in a carbonate aquifer in Jefferson County, West Virginia. US Geol Surv Open-File Rep 2005-1407

  • Michel RL (1989) Tritium deposition over the continental United States, 1953–1983. In: Delleur JW (ed) Atmospheric deposition. International Association of Hydrological Sciences, Wallingford, UK, pp 109–115

    Google Scholar 

  • Nelms DL, Moberg RM (2010) Hydrogeology and groundwater availability in Clarke County, Virginia. US Geol Surv Sci Invest Rep 2010-5112

  • Nelms DL, Harlow GE Jr, Hayes DC (1997) Base-flow characteristicsof streams in the Valley and Ridge, the Blue Ridge, andthe Piedmont physiographic provinces of Virginia. US Geol Surv Water Suppl Pap 2457

  • Neumann RB, LaBolle EM, Harvey CF (2008) The effects of dual-domain mass transfer on the tritium-helium-3 dating method. Environ Sci Technol 42:4837–4843

    Article  Google Scholar 

  • Perry LD, Costain JK, Geiser PA (1979) Heat flow in western Virginia and a model for the origin of thermal springs in the folded Appalachians. J Geophys Res 84(B12):6875–6883

    Article  Google Scholar 

  • Poeter EP, Hill MC (1998) Documentation of UCODE, A computer code for universal inverse modeling. US Geol Surv Water Res Invest Rep 98-4080

  • Poeter EP, Hill MC, Banta ER, Mehl, S, Christensen S (2005) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. US Geol Surv Tech Methods 6-A11

  • Pollock D (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the U. S. Geological Survey finite-difference ground-water flow model. US Geol Surv Open-File Rep 94-464

  • Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. calibration of a ground-water flow model. Hydrogeol J 12(4):389–407

    Article  Google Scholar 

  • Sanford W (2011) Calibration of models using groundwater age. Hydrogeol J 19:13–16

    Article  Google Scholar 

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158

    Article  Google Scholar 

  • Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89:353–362

    Article  Google Scholar 

  • Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–256

    Article  Google Scholar 

  • Senior LA, Goode DJ (1999) Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on groundwater flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania. US Geol Surv Water Res Invest Rep 99-4228

  • Shapiro AM (2001) Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resour Res 37(3):507–522

    Article  Google Scholar 

  • Shapiro AM (2011) The challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers. Hydrogeol J 19:9–12

    Article  Google Scholar 

  • Schuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Solomon DK, Genereux DP, Plummer LN, Busenberg E (2010) Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers. Water Resour Res 46, W04518. doi:10.1029/2009WR008341

    Article  Google Scholar 

  • Tiedeman CR, Lacombe PJ, Goode DJ (2010) Multiple well-shutdown tests and site-scale flow simulation in fractured rocks. Ground Water 48(3):401–415

    Article  Google Scholar 

  • Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely fractured porous media. J Contam Hydrol 23:1–44

    Article  Google Scholar 

  • Trapp H, Jr, Horn MA (1997) Ground Water Atlas of the United States, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia. US Geol Surv Hydrol Atlas HA 730-L

  • Troldberg L, Jensen KH, Engesgaard P, Refsgaard JC, Hinsby K (2008) Using environmental tracers in modeling flow in a complex aquifer system. J Hydrol Eng 13(11):1037–1048

    Google Scholar 

  • US Department of Commerce (2012) National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA. Available at http://www.esrl.noaa.gov/gmd/. Accessed on 3 April 2012

  • US Department of Energy (2012) DOE, Carbon Dioxide Information Analysis Center (CDIAC). Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. Available at http://cdiac.esd.ornl.gov/. Accessed on 3 April 2013

  • US Geological Survey (2012) US Geological Survey, Reston Chlorofluorocarbon Laboratory. US Geological Survey, Reston, VA. Available at http://water.usgs.gov/lab/chlorofluorocarbons/sampling/.Accessed on 3 April 2013

  • Weary DJ (2008) Preliminary Map of potentially karstic carbonate rocks in the central and southern Appalachian states. US Geol Surv Open-File Rep 2008-1154

  • Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Res Res 38(10):1198–1211

    Article  Google Scholar 

  • Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678

    Article  Google Scholar 

  • Wright WG (1990) Groundwater hydrology and quality in the Valley and Ridge and Blue Ridge physiographic provinces of Clarke County, Virginia, US Geol Surv Water Res Invest Rep 90-4134

  • Wu Q, Zhou W, Pan G, Ye S (2009) Application of a discrete-continuum model to karst aquifers in North China. Ground Water 47(3):453–461

    Article  Google Scholar 

  • Yager RM (1996) Simulated three-dimensional ground-water flow in the Lockport Group, a fractured-dolomite aquifer near Niagara Falls, New York. US Geol Surv Water Supply Pap 2487

  • Yager RM, Ratcliffe NM (2010) Hydrogeology and simulation of groundwater flow in fractured rock in the Newark Basin, Rockland County, New York. US Geol Surv Sci Invest Rep 2010-5250

  • Yager RM, Voss CI, Southworth S (2009) Comparison of alternative representations of hydraulic-conductivity anisotropy in folded fractured-sedimentary rock: modeling groundwater flow in the Shenandoah Valley (USA). Hydrogeol J 17(5):1111–1131

    Article  Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

Information required to construct and calibrate the groundwater flow model described in this study was provided by USGS colleagues G. Harlow, K. McCoy, J. Pope and J. Eggleston, D. Weary, and Mark Kozar. The manuscript was improved by comments from reviewers, including S. Eberts, K. McCoy, A. Massoudieh and W.P. Gardner. We thank Allen Shapiro and D. Goode who assisted with numerical simulations pertaining to the effects of exchange between mobile and immobile waters on environmental tracer concentrations. This study was supported by the USGS Groundwater Resources Program and the USGS National Research Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Yager.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yager, R.M., Plummer, L.N., Kauffman, L.J. et al. Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA. Hydrogeol J 21, 1193–1217 (2013). https://doi.org/10.1007/s10040-013-0997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0997-9

Keywords

Navigation