Hydrogeology Journal

, Volume 21, Issue 6, pp 1219–1234 | Cite as

Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model

  • P. Seferou
  • P. Soupios
  • N. N. Kourgialas
  • Z. Dokou
  • G. P. Karatzas
  • E. Candasayar
  • N. Papadopoulos
  • V. Dimitriou
  • A. Sarris
  • M. Sauter
Paper

Abstract

An integrated approach for monitoring the vertical transport of a solute into the subsurface by using a geophysical method and a simulation model is proposed and evaluated. A medium-scale (1 m3) laboratory tank experiment was constructed to represent a real subsurface system, where an olive-oil mill wastewater (OOMW) spill might occur. High-resolution cross-hole electrical resistivity tomography (ERT) was performed to monitor the OOMW transport. Time-lapse ERT images defined the spatial geometry of the interface between the contaminated and uncontaminated soil into the unsaturated and saturated zones. Knowing the subsurface characteristics, the finite element flow and transport model FEFLOW was used for simulating the contaminant movement, utilizing the ERT results as a surrogate for concentration measurements for the calibration process. A statistical analysis of the ERT measurements and the corresponding transport model results for various time steps showed a good agreement between them. In addition, a sensitivity analysis of the most important parameters of the simulation model (unsaturated flow, saturated flow and transport) was performed. This laboratory-scale study emphasizes that the combined use of geophysical and transport-modeling approaches can be useful for small-scale field applications where contaminant concentration measurements are scarce, provided that its transferability from laboratory to field conditions is investigated thoroughly.

Keywords

Hydrogeophysics Laboratory experiment Transport modeling Phenol 

Transport d’eau usée de moulin à huile d’olive en conditions de laboratoire non saturée et saturée au moyen de la méthode de tomographie de résistivité électrique et du modèle FEFLOW

Résumé

Une approche intégrée pour le monitoring du transport vertical d’un soluté en milieu souterrain, au moyen d’une méthode géophysique et d’un modèle numérique, est proposée et évaluée. Une expérimentation de taille moyenne (1 m3) avec un réservoir de laboratoire a été construite pour représenter un système souterrain réel au sein duquel un déversement d’eau usée de moulin à huile d’olive (OOMW) pourrait se produire. De la tomographie de résistivité électrique haute résolution entre forages (ERT) a été mise en œuvre pour suivre le transport d’OOMW. La chronologie des images ERT définit la géométrie spatiale de l’interface entre le sol contaminé et non contaminé dans les zones non saturée et saturée.

Connaissant les caractéristiques du milieu souterrain, le modèle aux éléments finis d’écoulement et de transport FEFLOW a été utilisé pour simuler le mouvement du contaminant, en utilisant les résultats ERT pour le calage en tant que substitut aux mesures de concentration. Une analyse statistique des mesures ERT et des résultats correspondant du modèle de transport pour différents pas de temps a montré une bonne adéquation entre eux. De plus, une analyse de sensibilité des paramètres les plus importants du modèle de simulation (écoulement en conditions non saturées, écoulement et transport en zone saturée) a été réalisée. Cette étude à l’échelle du laboratoire souligne que l’utilisation combinée de géophysique et d’approches de modélisation du transport peuvent être utiles pour des applications de terrain à petite échelle où les mesures de concentrations en contaminant sont rares, sous réserve que sa transposition du laboratoire aux conditions de terrain soit étudiée de façon complète.

El transporte de agua residuales de un molino de aceite de oliva bajo condiciones de laboratorio no saturadas y saturadas usando el método de tomografía de resistividad geoeléctrica y el modelo FEFLOW

Resumen

Se propone y evalúa un enfoque integrado para monitorear el transporte vertical de un soluto hacia la subsuperficie usando un método geofísico y un modelo de simulación. Se diseñó un experimento con un tanque de laboratorio de media escala (1 m3) para representar un sistema subsuperficial real, donde podría ocurrir el derrame de las aguas residuales de un molino de aceite de oliva (OOMW). Se llevó a cabo una tomografía de resistividad eléctrica de alta resolución a través de un pozo (ERT) para monitorear el transporte del OOMW. Imágenes periódicas de ERT definieron la geometría espacial de la interfase entre el suelo contaminado y no contaminado dentro de las zonas saturada y no saturada. Conociendo las características subsuperficiales se usó un modelo de transporte y flujo de elementos finitos FEFLOW para simular el movimiento del contaminante, utilizando los resultados del ERT como sustituto para las mediciones de concentración para el proceso de calibración. Un análisis estadístico de las medidas de ERT y el correspondiente modelo de transporte resulta para varios pasos de tiempo mostraron un buen acuerdo entre ellos. Además, se realizó un análisis de sensibiIidad de los parámetros más importantes del modelo de simulación (flujo no saturado, flujo saturado y transporte). Este estudio a escala de laboratorio enfatiza que el uso combinado de los enfoques de la geofísica y la modelación del transporte puede ser útil para aplicaciones de campo a escala pequeña, donde las medidas de concentraciones de contaminantes son escasas, siempre y cuando que la transferencia de las condiciones de laboratorio a las condiciones de campo sea investigada cuidadosamente.

运用地电阻率层析成像法和FEFLOW模型研究橄榄油磨坊废水在非饱和与饱和试验条件下的运移

摘要

本文提出并评估了一种运用地球物理方法和模拟模型监测溶质在地下垂直运移的综合方法。研究中建立了中比例尺(1 m3)的室内水箱试验来代表橄榄油磨坊废水可能泄漏的实际的地下系统,并采用高分辨率的孔间电阻率层析成像法监测橄榄油磨坊废水的运移。定时摄取的电阻率层析成像的图像显示了非饱和与饱和带中的无污染与污染土壤界面的空间结构。获知了地下结构特征后,采用有限元地下水流和溶质运移模拟软件FEFLOW来模拟污染物的运移,并将电阻率层析成像成果作为模型校准过程中的浓度实测值。电阻率层析成像数据的统计分析和相应的各时间步长的运移模型结果之间表现出较好的一致性。此外,对模型(饱和流、非饱和流和运移)中的各个参数进行了灵敏度分析。这个实验尺度的研究表明,对从室内条件到野外条件的转换进行深入的研究后,地球物理和运移模型相结合的方法可以应用于缺乏污染物浓度测量方法的小尺度野外场地。

Μελέτη της μεταφοράς αποβλήτων ελαιουργείων στην ακόρεστη και κορεσμένη ζώνη σε εργαστηριακές συνθήκες με τη μέθοδο της γεωηλεκτρικής τομογραφίας και τη χρήση του μοντέλου FEFLOW

Περίληψη

Η συγκεκριμένη μελέτη παρουσιάζει και αξιολογεί μια ολοκληρωμένη προσέγγιση στην παρακολούθηση της κάθετης υπεδάφιας μεταφοράς διαλυμένης ουσίας αποβλήτων ελαιουργείων, χρησιμοποιώντας τις δυνατότητες των γεωφυσικών μεθόδων και των μοντέλων προσομοίωσης μεταφοράς ρύπων. Για την διεξαγωγή των εργαστηριακών μετρήσεων κατασκευάστηκε μεσαίου μεγέθους (1 m3) πειραματική δεξαμενή με σκοπό την προσομοίωση ενός πραγματικού υπεδάφειου συστήματος, στο οποίο λαμβάνει χώρα διαρροή αποβλήτου ελαιουργείου (OOMW). Για την παρακολούθηση της μεταφοράς του OOMW πραγματοποιήθηκε στην πειραματική δεξαμενή, υψηλής ανάλυσης γεωηλεκτρική τομογραφία (ΕΡΤ) μεταξύ γεωτρήσεων. Με τη χρήση χρονικά μεταβαλλόμενων εικόνων ΕΡΤ καθορίστηκε η χωρική γεωμετρία της διεπιφάνειας μεταξύ ρυπασμένου και μη ρυπασμένου εδαφικού τμήματος στην ακόρεστη και κορεσμένη ζώνη. Με βάση τις μετρήσεις των φυσικοχημικών χαρακτηριστικών του μέσου πλήρωσης της εργαστηριακής δεξαμενής, χρησιμοποιήθηκε το μοντέλο πεπερασμένων στοιχείων FEFLOW για την προσομοίωση της μεταφοράς του ρύπου. Κατά τη διαδικασία της βαθμονόμησης του μοντέλου FEFLOW, λόγο έλλειψης πραγματικών μετρήσεων συγκέντρωσης του ρύπου, αξιοποιήθηκαν - χρησιμοποιήθηκαν τα αποτελέσματα της μεθόδου ΕΡΤ. Η στατιστική ανάλυση των μετρήσεων της μεθόδου ΕΡΤ με τα αντίστοιχα αποτελέσματα του μοντέλου μεταφοράς FEFLOW, σε διάφορα χρονικά βήματα, έδειξε μια πολύ καλή συσχέτιση μεταξύ αυτών. Επιπρόσθετα, πραγματοποιήθηκε ανάλυση ευαισθησίας για τις σημαντικότερες παραμέτρους του μοντέλου προσομοίωσης (ακόρεστη ροή, κορεσμένη ροή και μεταφορά ρύπου). Στη συγκεκριμένη εργαστηριακής κλίμακας μελέτη δίνεται ιδιαίτερη έμφαση στη συνδυασμένη χρήση των γεωφυσικών μεθόδων με μοντέλα προσομοίωσης μεταφοράς ρύπων στο υπέδαφος. Αναλυτικότερα, η προτεινόμενη συνδυαστική προσέγγιση στην παρακολούθηση της κάθετης υπεδάφιας μεταφοράς διαλυμένης ουσίας αποβλήτων ελαιουργείων, δύναται να χρησιμοποιηθεί σε μικρής κλίμακας εφαρμογές πεδίου όπου μετρήσεις συγκέντρωσης ρύπων είναι σπάνιες. Θα πρέπει όμως εδώ να επισημανθεί η ανάγκη περαιτέρω διερεύνησης της δυνατότητας μεταφοράς της συγκριμένης τεχνογνωσίας από την εργαστηριακή κλίμακα σε συνθήκες πεδίου.

Transporte de águas residuais de lagares de azeite em condições laboratoriais não saturadas e saturadas utilizando o método de tomografia de resistividade geoelétrica e o modelo FEFLOW

Resumo

Propõe-se e avalia-se uma aproximação integrada para monitorizar o transporte vertical de um soluto para a subsuperfície utilizando um método geofísico e um modelo de simulação. Fez-se uma experiência laboratorial em tanque de média escala (1 m3) para representar um sistema subsuperficial real onde poderia ocorrer o derrame de águas residuais de um lagar de azeite (ARLA). Realizou-se tomografia de resistividade elétrica (TRE) de resolução elevada entre furos para monitorizar o transporte das ARLA. As imagens da TRE em intervalos de tempo definiram a geometria espacial da interface entre o solo contaminado e não contaminado dentro da zona não saturada e saturada. Conhecendo as caraterísticas da subsuperfície, utilizou-se o modelo de escoamento e de transporte de elementos finitos FEFLOW para simular o movimento de contaminantes, utilizando para o processo de calibração os resultados da TRE em substituição das medições de concentração. Uma análise estatística das medições da TRE e os correspondentes resultados do modelo de transporte para vários intervalos de tempo mostrou uma boa correlação entre eles. Além disso, fez-se uma análise de sensibilidade dos parâmetros mais importantes do modelo de simulação (fluxo não saturado, fluxo saturado e transporte). Este estudo, à escala de laboratório, salienta que o uso combinado de métodos geofísicos e de modelação de transporte podem ser úteis para aplicações de campo a pequena escala onde as medições de concentrações de contaminantes são escassas, desde que a transferibilidade das condições de laboratório para o campo sejam cuidadosamente investigadas.

References

  1. Al-Darby A, Abdel-Nasser G (2006) Nitrate leaching through unsaturated soil columns: comparison between numerical and analytical solutions. J Appl Sci 6(4):735–743CrossRefGoogle Scholar
  2. ANSYS (2011) ANSYS Mechanical, ANSYS, Canonsburg, PAGoogle Scholar
  3. APHA (1999) Standard methods for the examination of water and wastewater, method 5530, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  4. Badv K, Faridfard MR (2005) Laboratory determination of water retention and diffusion coefficient in unsaturated sand. Water Air Soil Pollut 161:25–38CrossRefGoogle Scholar
  5. Bentley L, Gharibi M (2004) Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics 69(3):674–680CrossRefGoogle Scholar
  6. Bing Z, Greenhalgh S (2000) Cross-hole resistivity tomography using different electrode configurations. Geophys Prospect 48:887–912. doi:10.1046/j.1365-2478.2000.00220.x CrossRefGoogle Scholar
  7. Binley A, Cassiani G, Middleton R, Winship P (2002a) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267:147–159CrossRefGoogle Scholar
  8. Binley A, Winship P, West LJ, Pokar M, Middleton R (2002b) Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J Hydrol 267:160–172CrossRefGoogle Scholar
  9. Bloem E, French HK, Binley A, Schotanus D, Eggen G (2010), Time-lapse resistivity measurements combined with soil water sampling to characterize solute movement in the unsaturated zone at Oslo airport, Gardermoen. Fall Meeting 2010, Abstract no. H13G-04, American Geophysical Union, Washington, DCGoogle Scholar
  10. Candansayar ME (2008) Two-dimensional individual and joint inversion of three- and four-electrode array DC resistivity data. J Geophys Eng 5:290–300CrossRefGoogle Scholar
  11. Cassiani G, Binley A (2005) Modeling unsaturated flow in a layered formation under quasi-steady state conditions using geophysical data constraints. Adv Water Resour 28:467–477CrossRefGoogle Scholar
  12. Cassiani G, Bruno V, Villa A, Fusi N, Binley AM (2006) A saline trace test monitored via time-lapse surface electrical resistivity tomography, J Appl Geophys 59(3):244–259Google Scholar
  13. Coscia I, Niklas L, Stewart G, Tobias V, Alan G (2012) Estimating traveltimes and groundwater flow patterns using 3D time-lapse crosshole ERT imaging of electrical resistivity fluctuations induced by infiltrating river water. Geophysics 77(4):E239–E250. doi:10.1190/geo2011-0328.1 CrossRefGoogle Scholar
  14. Culver TB, Hallisey SP, Sahoo D, Deitsch JJ, Smith JA (1997) Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environ Sci Technol 31(6):1581–1588CrossRefGoogle Scholar
  15. Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442CrossRefGoogle Scholar
  16. Diersch H-JG (2002) FEFLOW: physical basis of modeling. Reference manual, WASY, BerlinGoogle Scholar
  17. Diersch H-JG (2009) FEFLOW: finite element subsurface flow and transport simulation system. Reference manual. WASY, Berlin, 292 ppGoogle Scholar
  18. Doetsch J, Linde N, Vogt T, Binley A, Green AG (2012) Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring. Geophysics 77(5):B207. doi:10.1190/geo2012-0046.1 CrossRefGoogle Scholar
  19. Dokou Z, Karatzas G (2012) Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the Ghyben-Herzberg approach. Hydrol Sci J 57(5):985–999CrossRefGoogle Scholar
  20. EarthImager 3D (2008) Resistivity inversion software manual, version 1.5.3. Advanced Geosciences, Austin, TXGoogle Scholar
  21. Fiore S, Zanetti MC (2009) Sorption of phenols: influence of groundwater pH and of soil organic carbon content. Am J Environ Sci 5(4):546–554CrossRefGoogle Scholar
  22. Gasperikova E, Hubbard SS, Watson DB, Baker GS, Peterson JE, Kowalsky MB, Smith M, Brooks S (2012) Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior. J Contam Hydrol 142–143:33–49CrossRefGoogle Scholar
  23. Grossman EL (1997) The effects of container geometry on granular convection. Phys Rev E 56:3290CrossRefGoogle Scholar
  24. Herbert AW, Jackson CP, Lever DA (1988) Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. Water Resour Res 24(10):1781–1794CrossRefGoogle Scholar
  25. Irving J, Singha K (2010) Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities. Water Resour Res 46, W11514. doi:10.1029/2009WR008340 CrossRefGoogle Scholar
  26. Jakovovic D, Werner AD, Simmons CT (2011) Numerical modelling of saltwater up-coning: comparison with experimental laboratory observations. J Hydrol 402(3–4):261–273CrossRefGoogle Scholar
  27. Jardani A, Revil A, Duponta JP (2012) Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging. Adv Water Resour 52:62–77CrossRefGoogle Scholar
  28. Johnson T, Versteeg R, Rockhold M, Slater L, Ntarlagiannis D, Greenwood W, Zachara J (2012) Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints. Geophysics 77(6):EN85–EN96. doi:10.1190/geo2012-0121.1 CrossRefGoogle Scholar
  29. Karaoulis M, Revil A, Werkem D, Minsley B, Woodruff W, Kemna A (2011) Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach. Geophys J Int 187:237–251CrossRefGoogle Scholar
  30. Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146CrossRefGoogle Scholar
  31. Kim J-H, Yi MJ, Park SG, Kim JG (2009) 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. J Appl Geophys 68(4):522–532CrossRefGoogle Scholar
  32. Knight JB, Jaeger HM, Nagel S (1993) Vibration-induced size separation in granular media: the convection connection. Phys Rev Lett 70:3728CrossRefGoogle Scholar
  33. Knight JB, Ehrichs EE, Kuperman VY, Flint JK, Jaeger HM, Nagel SR (1996) Experimental study of granular convection. Phys Rev E 54:5726CrossRefGoogle Scholar
  34. Koukadaki MA, Karatzas GP, Papadopoulou MP, Vafidis A (2007) Identification of the saline zone in a coastal aquifer using electrical tomography data and simulation. Water Resour Manag 21:1881–1898. doi:10.1007/s11269-006-9135-y CrossRefGoogle Scholar
  35. LaBrecque DJ, Morelli G, Daily WA, Ramirez A, Lundegard P (1997), Occam’s inversion of 3-D electrical resistivity tomography. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. Society of Exploration Geophysicists, Tulsa, OK, pp 575–590Google Scholar
  36. Leontarakis K, Apostolopoulos GV (2012) Laboratory study of the cross-hole resistivity tomography: the model stacking (MOST) technique. J Appl Geophys 80:67–82CrossRefGoogle Scholar
  37. Lin HJ, Richards DR, Talbot CA, Yeh G-T, Cheng J, Cheng H (1997) FEMWATER: a three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media. Technical Report CHL-97-12, US Army Corps of Engineers, Washington, DC and Pennsylvania State University, University Park, PAGoogle Scholar
  38. Loke MH, Barker RD (1996) Rapid least squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152CrossRefGoogle Scholar
  39. Lydakis-Simantiris N, Anastopoulos M, Terzis E, Vozinakis K (2005) Determination of phenols in river waters: a case study for Keritis River at northwestern Crete. Proceedings of the 2005 WSEAS International Conference on Engineering Education, Athens, Greece, July 2005, pp 446–451Google Scholar
  40. Majken CL, Karsten H, Jensen AB, Nielsen L (2008) Monitoring unsaturated flow and transport using cross-borehole geophysical methods. Vadose Zone J 7(1):227–237. doi:10.2136/vzj2006.0129 CrossRefGoogle Scholar
  41. Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents, part 1: organic matter degradation by chemical and biological processes: an overview. Environ Int 31(2):289–295CrossRefGoogle Scholar
  42. Mirbagheri SA (2004) Modeling contaminant transport in soil column and ground water pollution control. Int J Environ Sci Technol 1(2):141–150Google Scholar
  43. Mirbagheri SA, Monfared HSA (2009) Pesticide transport and transformation modeling in soil column and groundwater contamination prediction. Int J Environ Sci Technol 6(2):233–242Google Scholar
  44. Moraetis D, Stamati FE, Nikolaidis NP, Kalogerakis N (2011) Olive mill wastewater irrigation of maize: impacts on soil and groundwater. Agric Water Manage 98:1125–1132CrossRefGoogle Scholar
  45. Müller KJ, Vanderborght A, Englert A, Kemna J, Huisman A, Rings J, Vereecken H (2010) Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour Res 46, W03502. doi:10.1029/2008WR007595 CrossRefGoogle Scholar
  46. Osiensky JL, Donaldson PR (1995) Electrical flow through an aquifer for contaminant source leak detection and delineation of plume evolution. J Hydrol 169:243–263CrossRefGoogle Scholar
  47. Pankow JF, Rathbun RE, Zogorski JS (1996) Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from river and streams. Chemosphere 33:921–937CrossRefGoogle Scholar
  48. Peleg N, Gvirtzman H (2010) Groundwater flow modeling of two-levels perched karstic leaking aquifers as a tool for estimating recharge and hydraulic parameters. J Hydrol 388:13–27CrossRefGoogle Scholar
  49. Perri MT, Cassiani G, Gervasio I, Deiana R, Binley A (2012) A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: comparison of time-lapse results. J Appl Geophys 79:6–16CrossRefGoogle Scholar
  50. Piotrowska A, Lamarino G, Antionietta RM, Gianfreda L (2006) Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol Biochem 38:600–610CrossRefGoogle Scholar
  51. Rivett MO, Clark L (2007) A quest to locate sites described in the world’s first publication on trichloroethene contamination of groundwater. J Eng Geol Hydrogeol 40(3):241–249. doi: 10.1144/1470-9236/06-047
  52. Rong Y (1999) A study of vadose zone transport model VLEACH. J Soil Contam 8(2):217–229CrossRefGoogle Scholar
  53. Rubin Y, Hubbard S (eds) (2005) Hydrogeophysics, series: Water Science and Technology Library, vol 50. Springer, Heidelberg, GermanyGoogle Scholar
  54. Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40:453–63CrossRefGoogle Scholar
  55. Seferou P (2011) Characterization of unsaturated flow and transport in porous deposits with hydrogeophysical laboratory methods. MSc Thesis, Georg-August Universitat – Gottingen, Hydrogeology and Environment Geosciences (HEG), GermanyGoogle Scholar
  56. Sasaki Y (1994) 3-D resistivity inversion using the finite-element method. Geophysics 59:1839-1848CrossRefGoogle Scholar
  57. Slater L, Zaidman MD, Binley AM, West LJ (1997) Electrical imaging of saline tracer migration for the investigation of unsaturated zone transport mechanisms. Hydrol Earth Syst Sci 1(2):291–302CrossRefGoogle Scholar
  58. Slater L, Versteeg R, Binley A, Cassiani G, Birken R, Sandberg S (2002) A 3D ERT study of solute transport in a large experimental tank. J Appl Geophys 49:211–229CrossRefGoogle Scholar
  59. Smith CJ, Perfetti TA, Morton MJ, Rodgman A, Garg R, Selassie CD, Hansch C (2002) The relative toxicity of substituted phenols reported in cigarette mainstream smoke. Toxicol Sci 69:265–278CrossRefGoogle Scholar
  60. Swanson RD, Singha K, Day-Lewis FD, Binley A, Keating K, Haggerty R (2012) Direct geoelectrical evidence of mass transfer at the laboratory scale. Water Resour Res 48, W10543. doi:10.1029/2012WR012431 CrossRefGoogle Scholar
  61. Tait NG, Davison RM, Whittaker JJ, Leharne SA, Lerner DN (2004) Borehole optimisation system (BOS): a GIS-based risk analysis tool for optimising the use of urban ground water. Environ Model Softw 19:1111–1124CrossRefGoogle Scholar
  62. Tsagaraki E, Lazarides HN, Petrotos KB (2007) Olive mill wastewater treatment. In: Oreopoulou V, Winfried R (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 133–157CrossRefGoogle Scholar
  63. van Genuchten M-Th (1978) Mass transport in saturated-unsaturated media: one-dimensional solutions. Research Rep. no. 87-WR-11, Water Resources Program, Princeton University, Princeton, NJGoogle Scholar
  64. Ward AS, Gooseff MN, Singha K (2010) Characterizing hyporheic transport processes: interpretation of electrical geophysical data in coupled stream–hyporheic zone systems during solute tracer studies. Adv Water Resour 33(11):1320–1330CrossRefGoogle Scholar
  65. Zenjari B, Neimeddine A (2001) Impact of spreading olive mill wastewater on soil characteristics: laboratory experiments. Agronomie 21:749–755CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Seferou
    • 1
    • 2
  • P. Soupios
    • 2
  • N. N. Kourgialas
    • 3
  • Z. Dokou
    • 3
  • G. P. Karatzas
    • 3
  • E. Candasayar
    • 4
  • N. Papadopoulos
    • 5
  • V. Dimitriou
    • 2
  • A. Sarris
    • 5
  • M. Sauter
    • 1
  1. 1.Department of Applied Geology, Hydrogeology and Environment Geoscience (HEG)Georg-August UniversitatGottingenGermany
  2. 2.Department of Natural Resources and EnvironmentTechnological Educational Institute of CreteChaniaGreece
  3. 3.Department of Environmental EngineeringTechnical University of CreteChaniaGreece
  4. 4.Department of Geophysical EngineeringAnkara UniversityAnkaraTurkey
  5. 5.Laboratory of Geophysical-Satellite Remote Sensing & Archaeo-environmentInstitute for Mediterranean Studies, Foundation for Research and Technology, Hellas (FORTH)RethymnonGreece

Personalised recommendations