Hydrogeological model of the Baltic Artesian Basin

Modèle hydrogéologique du bassin artésien de la Baltique

Modelo hidrogeológico de la cuenca artesiana del Báltico

Modelo hidrogeológico da Bacia Artesiana do Báltico

Abstract

The Baltic Artesian Basin (BAB) is a complex multi-layered hydrogeological system in the south-eastern Baltic covering about 480,000 km2. The aim of this study is to develop a closed hydrogeological mathematical model for the BAB. Heterogeneous geological data from different sources were used to build the geometry of the model, i.e. geological maps and stratigraphic information from around 20,000 boreholes. The finite element method was used for the calculation of the steady-state three-dimensional (3D) flow of unconfined groundwater. The 24-layer model was divided into about 1,000,000 finite elements. A simple recharge model was applied to describe the rate of infiltration, and the discharge was set at the water-supply wells. Variable hydraulic conductivities were used for the upper (Quaternary) deposits, while constant hydraulic conductivity values were assumed for the deeper layers. The model was calibrated on the statistically weighted borehole water-level measurements, applying L-BFGS-B (automatic parameter optimization method) for the hydraulic conductivities of each layer. The principal flows inside the BAB and the integral flow parameters were analyzed. The modeling results suggest that deeper aquifers are characterized by strong southeast–northwest groundwater flow, which is altered by the local topography in the upper, active water-exchange aquifers.

Résumé

Le bassin artésien de la Baltique (BAB) est un système hydrogéologique complexe multi-couches dans le Sud-Est de la Baltique couvrant environ 480 000 km2. L’objectif de cette étude est de développer un modèle mathématique hydrogéologique fermé pour le BAB. Les données géologiques hétérogènes telles que cartes géologiques et informations stratigraphiques de quelques 20,000 forages, issues de différentes sources ont été utilisées pour construire la géométrie du modèle. Le modèle à éléments finis a été utilisé pour le calcul des écoulements en régime permanent et en 3D pour la partie aquifère libre. Le modèle à 24 couches a été divisé en environ 1,000,000 éléments finis. Un modèle simple de recharge a été appliqué afin de décrire la vitesse d’infiltration et le débit a été pris en considération au niveau des puits utilisés pour l’alimentation en eau. Des conductivités hydrauliques variables ont été utilisées pour les dépôts supérieurs (Quaternaire) alors que des valeurs de conductivité hydraulique constantes ont été attribuées pour les couches plus profondes. Le modèle a été calibré sur les données pondérées de niveau d’eau dans les forages en ayant recours à une méthode d’optimisation automatique des paramètres (L-BFGS-B) pour les conductivités hydrauliques de chaque couche. Les flux principaux au sein du BAB et les paramètres intégrés du flux ont été analysés. Les résultats du modèle suggèrent que les aquifères les plus profonds sont caractérisés par un fort écoulement Sud-Est Nord-Ouest, qui est perturbé localement par la topographie dans les parties aquifères supérieures caractérisés par des échanges d’eau actifs.

Resumen

La cuenca artesiana del Báltico (BAB) es un sistema hidrogeológico multicapa complejo en el sudeste del Báltico, que cubre alrededor de 480,000 km2. El objetivo de este estudio es desarrollar un modelo matemático hidrogeológico cerrado para el BAB. Se usaron datos geológicos heterogéneos de diversas fuentes para construir la geometría del modelo, por ejemplo, mapas geológicos e información estratigráfica de alrededor de 20,000 perforaciones. Se usó el método de elementos finitos para el cálculo del flujo tridimensional (3D) en estado estacionario del agua subterránea no confinada. El modelo de 24 capas se dividió en cerca de 1,000,000 de elementos finitos. Se aplicó un modelo de recarga simple para describir la tasa de infiltración, y la descarga se estableció en los pozos de abastecimiento de agua. Se usaron conductividades hidráulicas variables para los depósitos superiores (Cuaternario) mientras que los valores de conductividad hidráulica se asumieron como constantes para las capas más profundas. El modelo fue calibrado en base a mediciones de niveles de agua de pozos estadísticamente ponderadas, aplicando el L-BFGS-B (método automático de automatización de parámetros) para las conductividades hidráulicas de cada capa. Se analizaron los flujos principales y los parámetros integrales de flujo dentro del BAB. Los resultados del modelado sugieren que los acuíferos más profundos están caracterizados por un fuerte flujo de agua subterránea sudeste–noroeste, que está alterado por la topografía local en la parte superior, de acuíferos con intercambios activos.

Resumo

A Bacia Artesiana do Báltico (BAB) é um sistema hidrogeológico multi-camada complexo, localizado no sudeste do Báltico, cobrindo uma área de cerca de 480,000 km2. O objetivo desde estudo é o desenvolvimento de um modelo matemático hidrogeológico fechado da BAB. Foram usados dados geológicos heterogéneos provenientes de diferentes origens para construir a geometria do modelo, i.e., mapas geológicos e informação estratigráfica de cerca de 20,000 furos. Foi usado o método dos elementos finitos para o cálculo do estado estacionário tri-dimensional (3D) do fluxo de água subterrânea não confinada. O modelo com 24 camadas foi dividido em cerca de 1,000,000 de elementos finitos. Foi aplicado um modelo simples de recarga para descrever a taxa de infiltração, e a descarga foi definida nos poços para abastecimento de água. Foram usados diferentes valores de condutividade hidráulica nos depósitos superiores (Quaternário), enquanto que nas camadas mais profundas foram assumidos valores constantes de condutividade hidráulica. O modelo foi calibrado com base na estatística ponderada dos níveis de água medidos nos furos, aplicando o L-BFGS-B (método de optimização automática de parâmetros) para as condutividades hidráulicas de cada camada. Foram analisados os fluxos principais dentro da BAB, bem como todos os parâmetros de fluxo. Os resultados da modelação sugerem que os aquíferos mais profundos são caraterizados por um fluxo importante de direção sudeste–noroeste, que é modificado pela topografia local nos aquíferos superiores ativos onde se dá a troca de água.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Bastani M, Kholghi M, Rakhshandehroo GR (2010) Inverse modeling of variable-density groundwater flow in a semi-arid area in Iran using a genetic algorithm. Hydrogeol J 18:1191–1203

    Article  Google Scholar 

  2. Brangulis AP (1985) Vendian and Cambrian of Latvia. Zinatne, Riga

    Google Scholar 

  3. Brangulis AJ, Kaņevs S (2002) Latvijas tektonika [Tectonics of Latvia. State Geological Survey, Riga

  4. Brangulis AJ, Kurss V, Misans J, Stinkulis G (1998) Geology of Latvia. Geological map of 1:500 000 scale and description of the PreQuaternary deposits (in Latvian). State Geological Survey, Rīga

  5. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222

    Article  Google Scholar 

  6. Cherubini C, Pastore N (2011) Critical stress scenarios for a coastal aquifer in southeastern Italy Nat Hazards Earth Syst Sci 11(1381–1393):2011. doi:10.5194/nhess-11-1381-2011

    Google Scholar 

  7. Folch, Mas-Pla (2008) Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems. Hydrol Process 22(17):3476–3487

    Article  Google Scholar 

  8. Foley MG (1994) West Siberian basin hydrogeology: regional framework for contaminant migration from injected wastes. International Symposium on the Scientific and Engineering Aspects of Deep Injection Disposal of Hazardous and Industrial Wastes, Berkeley, CA, May 1994

  9. Harr ME (1962) Groundwater and seepage. McGraw-Hill, New York

    Google Scholar 

  10. Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models. Hydrogeol J 11:536–548

    Article  Google Scholar 

  11. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe, version 4. Available from the CGIAR-CSI SRTM 90 m database. http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1. Accessed 6 Feb 2013

  12. Juodkazis VI, Paltanavicitjs JP (1976) Filtration properties of slightly conductive layers of the Baltic artesian basin and methods of their investigation. Proceedings of the symposium Hydrogeology of Great Sedimentary Basins, IAHS/Hungarian Geological Institute, Budapest, May–June 1976

  13. Juodkazis V (1982) PreQuaternary sediment hydrogeological map of the Baltic republics USSR Ministry of Geology, LitNIGRI, Vilnius, Lithuania, 84 pp (in Russian)

    Google Scholar 

  14. Kabacoff RI (2012) Quick-R. http://www.statmethods.net/stats/regression.html. Accessed 29 September 2012

  15. Kovalevskij MI, Ozolins NК (1967) Tectonic structure of the Eastern European platform western block (in Russian). In: Questions of the Middle and Upper Paleozoic geology in Baltics. Zinatne, Riga

  16. Levins I, Levina N, Gavena I (1998) Latvian groundwater resources. State Geological Survey, Riga

    Google Scholar 

  17. Malolepszy Z (2005) Three-dimensional geological model of Poland and its application to geothermal resource assessment. Workshop Geological Models for Groundwater Flow Modeling, Extended Abstracts, October 2005, Annual Meeting, Geological Society of America, Salt Lake City, UT

  18. McDonald MG, Harbaugh AW (1989) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open File Rep 83–875

  19. Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17:1561–1577

    Article  Google Scholar 

  20. Mokrik R (1997) The paleohydrogeology of the Baltic Basin: Vendian and Cambrian. Tartu University Press, Tartu, Estonia

    Google Scholar 

  21. Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35:773–782

    Article  Google Scholar 

  22. Normani SD, Sykes JF (2012) Paleohydrogeologic simulations of Laurentide ice-sheet history on groundwater at the eastern flank of the Michigan Basin. Geofluids 12:97–122

    Article  Google Scholar 

  23. Paczynski B, Jezierski H, Mitrega J, Plochniewski Z, Skrypczyk L, Wodzinska I (1993) Hydrogeological atlas of Poland, scale 1:500,000, part I: fresh groundwater aquifer systems. Panstwowy Instytut Geologiczny, Warsaw, 24 pp, 4 maps

  24. Ravazzani G, Rametta D, Mancini M (2011) Macroscopic cellular automata for groundwater modelling: a first approach. Environ Model Software 26:634–643

    Article  Google Scholar 

  25. Schenk O, Gartner K (2006) On fast factorization pivoting methods for symmetric indefinite systems. Elec Trans Numer Anal 23:158–179

    Google Scholar 

  26. Spalvins A, Janbickis R, Slangens J, Gosk E, Lace I, Viksne Z, Atruskievics J, Levina N, Tolstovs J (1996) Hydrogeological model “Large Riga” (in Latvian and English). Atlas of map. Riga Technical University, Riga; State Geological Survey of Latvia, Riga; Geological Survey of Denmark and Greenland, Copenhagen, 102 pp

  27. Spalvins A, Slangers J, Lace I, Stuopis A, Domasevicius A (2009) Creating a regional hydrogeological model for south-east of Lithuania. (Scientific journal of Riga Technical University) Comput Sci 41:13–20

    Google Scholar 

  28. SciPy community (2011) SciPy Reference Guide, Release 0.10.0.dev. http://docs.scipy.org/doc/scipy/scipy-ref.pdf. Accessed 15 September 2011

  29. Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea, 2nd edn. Proceedings of the Baltic Sea Science Congress, Stockholm, 25–29 November 2001. http://www.io-warnemuende.de/topography-of-the-baltic-sea.html. Accessed 03 February 2012

  30. Sorokin SV, Larskaya LA, Savvaitova LM (1981) Devonian and carbon of the Baltics Zinatne, Riga (in Russian)

    Google Scholar 

  31. Stuopis A, Gregorauskas M, Domasevicius A (2010) Formation of groundwater runoff in Nemunas RBD (Lithuania). (Scientific journal of Riga Technical University) Comput Sci 45:16–26

    Google Scholar 

  32. Takčidi E (1999) Datu bāzes "Urbumi" dokumentācija [Documentation of the database “boreholes”]. State Geological Survey, Riga

  33. Trefry MG, Muffels C (2007) FEFLOW: a finite-element ground water flow and transport modeling tool. Ground Water 45(5):525–528

    Article  Google Scholar 

  34. Tuulig I, Floden T (2009) Seismic correlation of Paleozoic rocks across the northern Baltic Proper: Swedish–Estonian project since 1990, a review. Estonian J Earth Sci 58(4):273–285

    Article  Google Scholar 

  35. Ulste R (1961) Ordovician. In: Danilans I, Liepins P, Springis K (eds) Geology of the Latvia SSR (in Latvian). Zinatnu akademijas izdevnieciba, Riga, pp 40–47

    Google Scholar 

  36. Usaityte D (2000) The geology of the southeastern Baltic Sea: a review. Earth Sci Rev 50:137–225

    Article  Google Scholar 

  37. Vallner L (2003) Hydrogeological model of Estonia and its applications. Proc Estonian Acad Sci Geol 52(3):179–192

    Google Scholar 

  38. Vetrennikovs V (1996) Tectonic map of the Latvia and the Baltic Sea chrystalline basement in scale 1:1 000 000 (in Latvian). State Geological Survey, Riga

    Google Scholar 

  39. Weisberg S (2005) Applied linear regression. Wiley, Chichester, UK

  40. Welsh WD (2006) Great Artesian Basin transient groundwater model. Bureau of Rural Sciences, Canberra. http://adl.brs.gov.au/brsShop/data/gabtransient1.pdf. Accessed 10 Mar 2011

  41. Welsh WD, Doherty J (2005) Great Artesian Basin groundwater modelling. Engineers Australia, 29th Hydrology and Water Resources Symposium, Canberra, Australia, February 2005

  42. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn, vol 1: the basis. Butterworth-Heinemann, Oxford

  43. Zuzevicius A (2010) The groundwater dynamics in the southern part of the Baltic Artesian Basin during the late Pleistocene. Baltica 23(I):1–12

    Google Scholar 

  44. Yeo IW, Lee K (2003) Analytical solution for arbitrarily located multiwells in an anisotropic homogeneous confined aquifer. Water Resour Res 39(5):1133

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been funded by the European Social Fund project “Establishment of an interdisciplinary scientist group and modelling system for groundwater research” (Project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janis Virbulis.

Appendix

Appendix

Comparison with analytical solution

The model is validated against solutions of analytic problems. The first comparison is carried out with the analytical solution of the groundwater flow between two water reservoirs with fixed levels and uniform infiltration between them (Harr 1962). The analytical solution for the water level is predicted as

$$ {{h}^{2}} = h_{0}^{2} - \frac{{\left( {h_{0}^{2} - h_{{\text{L}}}^{2}} \right)x}}{L} + \frac{W}{{{{K}_{{\text{S}}}}}}\left( {L - x} \right)x, $$
(11)

where h is the water level, x is the position between the reservoirs, W is the recharge rate in m/s, K is the hydraulic conductivity in m/s, h 0 and h L are the water levels at x = 0 and x = L, respectively. Both water levels are equal and only half of the domain is modeled because the solution in this case is symmetric to the vertical line x = L/2. The length of the domain for the analytic solution (L) is 1.8 m, h 0 = h L = 0.1 m, W = 0.1 m/day and K = 1 m/day. The numeric domain starts at x = −0.1 m and ends at x = 1 m, the water head is set as a boundary condition h(−0.1–0) = 0.1 m, and the recharge rate W(0–0.91) = 0.1 m/day. In Fig. 14, the analytical (dashed line) and numerical (dotted line for K = 1 m/day and solid line for K = 0.71 m/day) solutions are shown in vertical cross-section with the numerical FE mesh as gray lines in the background.

Fig. 14
figure14

Groundwater level between reservoirs. Dashed line: analytical solution (Harr 1962); dotted line: MOSYS solution (K = 1 m/day); solid line: MOSYS solution (K = 0.71 m/day), gray lines: FE mesh

The analytical solution shows a slightly higher piezometric head distribution than the modeling results using the same conductivity, K = 1 m/day. This is expected due to the simplified treatment of the unconfined zones—in the model the water can also flow through the elements above the water table. If the conductivity in the numerical solution is decreased so that the maximum values of the piezometric head are equal (at K = 0.71 m/day), the numerical solution is closer to the analytical one (solid line in Fig. 14). As the conductivity values in the BAB are not exactly known and will be calibrated anyway, the agreement with the analytical solution is acceptable for the practical application.

The other case for comparison relates to the analytical solution in the confined multi-well aquifer. The analytical solution for the head change h’ caused by pumping wells is given in Yeo and Lee (2003):

$$ h\prime \left( {x,y} \right) = \frac{{ - 4}}{{{{\pi }^{2}}}}\sum\limits_{{m = 1}}^{\infty } {\sum\limits_{{n = 1}}^{\infty } {\frac{{\sum\limits_{{i = 1}}^{p} {{{q}_{{\text{i}}}}\sin \frac{{n\pi {{x}_{{\text{i}}}}}}{L}} \sin \frac{{m\pi {{y}_{{\text{i}}}}}}{H}}}{{\left( {{{T}_{{\text{x}}}}{{n}^{2}}\frac{H}{L} + {{T}_{{\text{y}}}}{{m}^{2}}\frac{L}{H}} \right)}}} } \sin \frac{{n\pi x}}{L}\sin \frac{{m\pi y}}{H}, $$
(12)

where L is the domain size along the x axis, H is the domain size along the y axis, T x and T y are the hydraulic transmissivities in the x and y directions, respectively, x i and y i are the co-ordinates of the pumping wells, p is the number of wells, q i is the pumping rate of the i-th well.

Three wells with a pumping rate of 1 m3/day are positioned at (x,y) = (300, 500), (700, 300), (700, 700). The head is fixed to h = 0.5 m at x = 0 m and to h = 1 m at x = 1,000 m. No-flow boundaries are set at y = 0 m and y = 1,000 m. In the analytical solution, this boundary condition is realized extending the domain in the y-direction 5 times and using 12 imaginary wells, similar to the situation described in Yeo and Lee (2003). The thickness of the aquifer is 1 m and conductivity K x = K y = K z = 1 m/day, resulting in T x = T y = 1 m2/day for the analytical solution. The mesh size is uniform with a target triangle area of 250 m2. The triangle mesh (thin lines) and isolines of the piezometric head distribution (bold lines) are shown in Fig. 15. The comparison of the analytical (dashed line) and numerical (dotted line) solutions along line y = 500 m in Fig. 16 shows a good agreement between both. The differences in elements near the well can be reduced by local grid refinement (gray solid line), where the target triangle area is 50 m2 within a radius of 50 m from the first well.

Fig. 15
figure15

Triangular mesh and isolines of piezometric head with step of 0.1 m. Head h = 0.5 m at x = 0 m and h = 1 m at x = 1,000 m

Fig. 16
figure16

Analytic solution (dashed line) and numerical results (dotted line; and solid gray line for the refined solution) at y = 500 m

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Virbulis, J., Bethers, U., Saks, T. et al. Hydrogeological model of the Baltic Artesian Basin. Hydrogeol J 21, 845–862 (2013). https://doi.org/10.1007/s10040-013-0970-7

Download citation

Keywords

  • Baltic Artesian Basin
  • Groundwater flow
  • Numerical modeling
  • Inverse modeling