Skip to main content

Integrated mapping of groundwater drought risk in the Southern African Development Community (SADC) region

Cartographie intégrée du risque d’assèchement de nappe dans la région de la Southern African Developpement Community (SADC)

Mapeo integrado del riesgo de sequía de agua subterránea en la región de la Comunidad Sudafricana para el Desarrollo (SADC)

Cartografia integrada do risco de seca das águas subterrâneas na região da Comunidade para o Desenvolvimento da África Austral (SADC)

Abstract

Groundwater drought denotes the condition and hazard during a prolonged meteorological drought when groundwater resources decline and become unavailable or inaccessible for human use. Groundwater drought risk refers to the combined physical risk and human vulnerability associated with diminished groundwater availability and access during drought. An integrated management support tool, GRiMMS, is presented, for the mapping and assessment of relative groundwater drought risk in the Southern African Development Community (SADC) region. Based on composite mapping analysis of region-wide gridded relative indices of meteorological drought risk, hydrogeological drought proneness and human groundwater drought vulnerability, the mapping results highlight consistent areas across the region with highest groundwater drought risk and populations in the order of 39 million at risk of groundwater drought at present. Projective climate-model results suggest a potentially significant negative impact of climate change on groundwater drought risk. The tool provides a means for further attention to the key, but neglected, role of groundwater in drought management in Africa.

Résumé

L’assèchement d’une nappe fait apparaître les risques d’une sécheresse prolongée avec la diminution des ressources en eau souterraine qui deviennent indisponibles ou inaccessibles pour l’utilisation humaine Le risque sécheresse concerne le risque physique combiné à la vulnérabilité humaine, associé à une diminution de la disponibilité et de l’accès à l’eau de la nappe. Un outil intégré, GRIMMS, est présenté pour cartographier et évaluer le risque d’assèchement de nappe dans la région de la Southern African Development Community (SADC). Basée sur l’analyse d’une grille composite régionale d’indices relatifs du risque météorologique de sécheresse, prédisposition de la nappe à la sécheresse et vulnérabilité humaine à l’assèchement de la nappe, la cartographie met en lumière à travers toute la région les zones présentant de façon constante le risque le plus élevé d’assèchement de nappe et des populations de l’ordre de 39 millions d’habitants exposées actuellement au risque de son assèchement. Les projections d’un modèle climatique suggèrent un risque potentiel significatif de changement climatique et d’assèchement de nappe. L’outil est un moyen d’apporter une nouvelle attention au rôle clef, mais négligé, de l’eau de nappe dans la gestion de la sécheresse en Afrique.

Resumen

La sequía del agua subterránea denota la condición y el peligro durante una prolongada sequía meteorológica cuando los recursos de agua subterránea disminuyen y se convierten en no disponibles o son inaccesible para el uso humano. El riesgo de sequía del agua subterránea se refiere al riesgo físico combinado con la vulnerabilidad humana relacionado con la disminución de la disponibilidad y acceso de agua subterránea durante la sequía. Se presenta una herramienta soporte de manejo integrado, GRiMMS, para el mapeo y la evaluación del riesgo relativo de sequía de agua subterránea en la región de la Comunidad Sudafricana para el Desarrollo (SADC). Sobre la base de un análisis de mapeos compuestos de una cuadrícula a escala regional de los índices relativos de riesgo de sequía meteorológica, de las tendencias hidrogeológicas a las sequías y de la vulnerabilidad humana a la sequía de agua subterránea, los resultados de los mapas resaltan áreas consistentes a través de toda la región con los más altos riesgos de sequía del agua subterránea y en poblaciones del orden de 39 millones en riesgo de sequía del agua subterránea en la actualidad. Los resultados de modelos climáticos proyectivos sugieren potencialmente un impacto negativo significativo del cambio climático sobre el riesgo de sequía del agua subterránea. La herramienta provee un medio para una ulterior atención del rol clave, aunque descuidado, del manejo del agua subterránea de la sequía en África.

Resumo

A seca das águas subterrâneas denota a condição e o risco durante uma seca meteorológica prolongada, quando os recursos de água subterrânea diminuem e se tornam indisponíveis ou inacessíveis ao uso humano. O risco de seca das águas subterrâneas refere-se à combinação do risco físico e do risco de vulnerabilidade antrópica associado à diminuição da disponibilidade de água subterrânea e ao seu acesso durante a seca. É apresentada uma ferramenta de apoio à gestão integrada, GRiMMS, para a cartografia e avaliação do risco relativo à seca das águas subterrâneas na região da Comunidade de Desenvolvimento da África Austral (SADC). Com base na análise de cartografia compósita de toda a região, dividida em quadrículas contendo os índices relativos de risco de seca meteorológica, propensão de seca hidrogeológica e vulnerabilidade humana à seca das águas subterrâneas, os resultados da cartografia permitem destacar, no presente, áreas consistentes com maior risco de seca das águas subterrâneas em toda a região e que as populações em risco por seca das águas subterrâneas são da ordem dos 39 milhões. Os resultados de modelos de previsão climática sugerem um impacte potencialmente negativo significativo resultante das alterações climáticas no risco de seca das águas subterrâneas. A ferramenta fornece um meio para uma maior atenção para o papel chave, mas negligenciado, das águas subterrâneas na gestão da seca em África.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Auditor-General South Africa (2009) Consolidated general report on the local government audit outcomes, 2008–2009. Auditor-General South Africa, Pretoria, 144 pp

  • Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A (2006) Determining global population distribution: methods, applications and data. Adv Parasitol 62:119–156. doi:10.1016/S0065-308X(05)62004-0

    Article  Google Scholar 

  • Bengtsson L, Arkin P, Berrisford P, Bougeault P, Folland CK, Gordon C, Haines K, Hodges KI, Jones P, Kållberg P, Rayner N, Simmons AJ, Stammer D, Thorne PW, Uppala SM, Vose RS (2007) The need for a dynamical climate reanalysis. Bull Am Meteorol Soc 88:495–501

    Article  Google Scholar 

  • Blench R (2001) ‘You can’t go home again’ Pastoralism in the new millennium. FAO, Rome; ODI, London,104 pp

  • Calow RC, Robins NS, MacDonald AM, MacDonald MJ, Gibbs BR, Orpen WRG, Mtembezeka P, Andrews AJ, Appiah SO (1997) Groundwater management in drought-prone areas of Africa. Water Resour Dev 3(2):241–261

    Article  Google Scholar 

  • Calow RC, MacDonald AM, Nicol AL, Robins NS, Kebede S (2002) The struggle for water: drought, water security and rural livelihoods. British Geological Survey Report, CR702/226N, BGS, Keyworth, UK, 67 pp

  • Calow RC, MacDonald AM, Nicol AL, Robins NS (2009) Ground water security and drought in Africa: linking availability, access, and demand. Ground Water. doi:10.1111/j.1745-6584.2009.00558.x

  • Carter RC (2007) Rapid assessment of groundwater opportunities for displaced and refugee populations. Waterlines 26(1):2–7

    Article  Google Scholar 

  • Cavé L, Beekman HE, Weaver J (2003) Impact of climate change on groundwater recharge estimation. In: Xu Y, Beekman HE(eds) Groundwater recharge estimation in Southern Africa. UNESCO IHP series no. 64, UNESCO, New York, pp 189–197

  • Christelis G, Struckmeier W (eds) (2011) Groundwater in Namibia: an explanation to the hydrogeological map, 2nd edn. 128 pp, Dept. of Water Affairs, Windhoek, Nambia

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • Cobbing JE, Hobbs PJ, Meyer R, Davies J (2008) A critical overview of transboundary aquifers shared by South Africa. Hydrogeol J 16:1207–1214

    Article  Google Scholar 

  • Colvin C, le Maitre D, Hughes S (2003) Assessing terrestrial groundwater dependent ecosystems in South Africa. WRC report no. 1090-2/2/03, Water Research Commission, Pretoria

  • Colvin C, Le Maitre D, Saayman I, Hughes S (2007) An introduction to aquifer dependent ecosystems in South Africa. WRC report TT 301/07, Water Research Commission, Pretoria, 74 pp

  • CSIR (2013) Geospatial Analysis Platform (GAP) Viewer. Pretoria: CSIR Built Environment. http://www.gap.csir.co.za/. Accessed 19 Feb. 2013

  • Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2(1):45–65. doi:10.1002/wcc.81

    Article  Google Scholar 

  • Day C, Monticelli F, Barron P, Haynes R, Smith J, Sello E (eds) (2010) District Health Barometer 2008/09. Technical report, Health Systems Trust, Durban, South Africa

  • Dee DP (2005) Bias and data assimilation. Q J Roy Meteorol Soc 131:3323–3343

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dept. of Water Affairs and Forestry (DWAF) (2006) Groundwater resource assessment II: Task 3aE recharge. Final report, DWAF, Pretoria, 129 pp

  • Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M, Agwe J, Buys P, Kjekstad O, Lyon B, Yetman G (2005) Natural disaster hotspots: a global risk analysis. Disaster Risk Management Series No. 5, World Bank, Washington, DC, 132 pp

  • Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885

    Article  Google Scholar 

  • DWAF (2006) The construction of a hydrologically-correct, annotated 1:500 000 spatial dataset of the rivers of South Africa and contiguous basins, Report no. N/0000/00/REH/0701. DWAF, Resource Quality Services, Pretoria. http://www.dwaf.gov.za/iwqs/gis_data/river/rivs500k.html. Accessed 17 Feb. 2013

  • Eriyagama N, Smakhtin V, Gamage N (2009) Mapping drought patterns and impacts: a global perspective. IWMI research report 133, International Water Management Institute, Colombo, Sri Lanka, 31 pp

  • European Centre for Medium-Range Weather Forecasts (ECMWF) (2008) http://www.ecmwf.int/research/era/do/get/era-interim. Accessed 16 Jan. 2013

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45,W00A16. doi:10.1029/2007WR006785

    Article  Google Scholar 

  • Foster S (2012) Hard-rock aquifers in tropical regions: using science to inform development and management policy. Hydrogeol J. doi:10.1007/s10040-011-0828-9l

  • Furey SG, Danert K (2012) Sustainable groundwater development: use, protect and enhance. Publication no. 2012-1, Rural Water Supply Network, St Gallen, Switzerland, 11 pp

  • Füssel H-M (2005) Vulnerability in climate research: a comprehensive conceptual framework. Breslauer Symposium. Paper no. 6. 33 pp. http://repositories.cdlib.org/ucias/breslauer/6. Accessed 15 Aug. 2012

  • Giordano M (2006) Agricultural groundwater use and rural livelihoods in sub-Saharan Africa: a first-cut assessment. Hydrogeol J 14:310–318. doi:10.1007/s10040-005-0479-9

    Article  Google Scholar 

  • Hassan MM, Atkins PJ, Dunn CE (2003) The spatial pattern of risk from arsenic poisoning: a Bangladesh case study. J Env Sci Health Part A Toxic Hazard Subst Environ Eng 38(1):1–24. doi:10.1081/ESE-120016590

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe. Version 4, available from the CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org. Accessed 14 Feb. 2013

  • Jiménez A, Pérez-Foguet A (2011) Water point mapping for the analysis of rural water supply plans: case study from Tanzania. J Water Resour Plan Mgt ASCE 137(5):439–447. doi:10.1061/(ASCE)WR.1943-5452.0000135

    Article  Google Scholar 

  • Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S (2012) Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 25–64

  • Lowry JH Jr, Miller HJ, Hepner GF (1995) A GIS-based sensitivity analysis of community vulnerability to hazardous contaminants on the Mexico/U.S. border. Photogramm Eng Remote Sens 61(11):1347–1359

    Google Scholar 

  • Lucas-Picher P, Wulff-Nielsen M, Christensen JH, Adalgeirsdottir G, Mottram R, Simonsen SB (2012) Very high-resolution regional climate model simulations over Greenland: identifying added value. J Geophys Res. doi:10.1029/2011JD016267

  • MacDonald AM, Davies J, Calow RC (2008) African hydrogeology and rural water supply. In: Adelana S, MacDonald AM (eds) Applied groundwater studies in Africa. IAH Selected Papers on Hydrogeology, volume 13. Taylor and Francis, London, pp 127–148

  • MacDonald AM, Calow RC, MacDonald DMJ, Darling WG, Docartaigh BÉÓ (2009a) What impact will climate change have on rural groundwater supplies in Africa? Hydrol Sci J 54(4):691–703

    Article  Google Scholar 

  • MacDonald, Dochartaigh BÒ, Welle K (2009b) Mapping for water supply and sanitation (WSS) in Ethiopia. Working Paper II, RIPPLE, Addis Ababa, Ethiopia, 24 pp

  • MacDonald AM, Bonsor HC, Docartaigh BÉÓ, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7, 7 pp. doi:10.1088/1748-9326/7/2/024009

  • MacKay H (2005) Protection and management of groundwater-dependent ecosystems: emerging challenges and potential approaches for policy and management. Aust J Bot 54(2):231–237

    Article  Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res Atmos 116. doi:10.1029/2010JD015068

  • Mendicino G, Senatore A, Versace P (2008) A groundwater resource index (GRI) for drought monitoring and forecasting in a Mediterranean climate. J Hyd 357:282–302. doi:10.1016/j.jhydrol.2008.05.005

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hyd 391:202–216. doi:10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2000) Special report on emissions scenarios: a special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 599 pp

    Google Scholar 

  • Naudé A, Badenhorst W, Zietsman L, Van Huyssteen E, Maritz J (2007) Geospatial analysis platform, version 2: technical overview of the mesoframe methodology and South African Geospatial Analysis Platform. CSIR report no. CSIR/BE/PSS/IR/2007/0104/B, CSIR, Pretoria

  • Nijssen B, Schnur R, Lettenmaier DP (2001) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J Clim 14:1790–1808

    Article  Google Scholar 

  • Nyong A, Adesina F, Osman Elasha B (2007) The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel. Mitig Adapt Strat Glob Change 12:787–797. doi:10.1007/s11027-007-9099-0

    Article  Google Scholar 

  • O’Brien K, Leichenko R, Kelkar U, Venema H, Aandahl G, Tompkins H, Javed A, Bhadwal S (2004) Mapping vulnerability to multiple stressors: climate change and globalization in India. Global Environ Change 14:303–313. doi:10.1016/j.gloenvcha.2004.01.001

    Article  Google Scholar 

  • Owor M, Taylor RG, Tindimugaya C, Mwesigwa D (2009) Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Environ Res Lett 4. doi:10.1088/1748-9326/4/3/035009

  • Pallas P (1986) Water for animals. FAO, Rome, 82 pp

    Google Scholar 

  • Peters E, Torfs PJJF, van Lanen HAJ, Bier G (2003) Propagation of drought through groundwater: a new approach using linear reservoir theory. Hydrol Process 17:3023–3040. doi:10.1002/hyp.1274

    Article  Google Scholar 

  • Pettorelli N, Vik O, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. doi:10.1016/j.tree.2005.05.011

    Article  Google Scholar 

  • Ploch L (2011) Madagascar’s political crisis. CRS report for Congress R40448, Congressional Research Service, Washington, DC,11 pp

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19:3771–3791. doi:10.1175/JCLI3824.1

    Article  Google Scholar 

  • Rutulis M (1987) Groundwater drought sensitivity of Southern Manitoba. Paper presented at the Canadian Water Resources Association 40 Annual Conference, 15–18 June 1987, Winnepeg, MB

  • SADC (2007) Integrated water resources management strategy for the Zambezi river basin. Inception report, Phase 2, SADC, Gaborone, Botswana, 21 pp

  • SADC (2009a) Explanatory brochure for the South African Development Community (SADC) Hydrogeological map and atlas. SADC, Gaborone, Botswana, 50 pp

  • SADC (2009b) Status of groundwater and drought management in SADC. Baseline survey report. Feb. 2009, SADC, Gaborone, Botswana, 32 pp

  • SADC (2012) Groundwater and Drought Management Project. SADC, Gaborone, Botswana. http://iwlearn.net/iw-projects/970/newsletters/sadc-groundwater-management-awareness-video. Accessed 19 Feb. 2013

  • SADC-HGMA (2010) SADC Hydrogeological map and atlas. http://196.33.85.22/bin-release/index.html. Accessed 16 Jan. 2013

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. doi:10.1002/hyp.6335

    Article  Google Scholar 

  • Schulze RE (ed) (2007) South African atlas of climatology and agrohydrology. WRC report 1489/1/05. Water Research Commission, Pretoria

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 109–230

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci Discuss 7:3977–4021. doi:10.5194/hess-14-1863-2010

    Article  Google Scholar 

  • Statistics South Africa (2007) Community survey: methodology, processes and highlights of key results. Report no. 03-01-20. http://www.statssa.gov.za/community_new/content.asp. Accessed 13 Feb. 2013

  • Statistics South Africa Agricultural Survey (2012) National Department of Agriculture, Forestry and Fisheries. http://www.nda.agric.za/publications/publications.asp?category=statistical+information. Accessed 13 Feb. 2013

  • Sylla M, Coppola E, Mariotti L, Giorgi F, Ruti P, dell’Aquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35:231–247. doi:10.1007/s00382-009-0613-9

    Article  Google Scholar 

  • Taylor CT, Alley WM (2001) Ground-water-level monitoring and the importance of long-term water-level data, US Geol Surv Circ 1217, 12 pp

  • Titus R, Beekman H, Adams S, Strachan L (2009) The basement aquifers of Southern Africa. Water Research Commission report no. TT 428-09, WRC, Pretoria, 183 pp

  • Trenberth KE, Dole R, Xue Y, Onogi K, Dee D, Balmaseda M, Bosilovich M, Schubert S, Large W (2010) Atmospheric reanalyses: a major resource for ocean product development and modeling. In: Hall J, Harrison DE, Stammer D (eds) Proc. “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference, vol 2. Venice, Italy, 21–25 September 2009, ESA Publication WPP-306, ESA, Ithaca, NY

  • Tucker CJ, Pinzón JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote E, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498. doi:10.1080/01431160500168686

    Article  Google Scholar 

  • Turton A, Godfrey L, Julien F, Hattingh H (2006) Unpacking groundwater governance through the lens of a trialogue: a southern African case study. Paper presented at the International Symposium on Groundwater Sustainability (ISGWAS), Alicante, Spain, 24–27 Jan. 2006, 18 pp

  • US Geological Survey (USGS) (2011) Vegetation Indices 16-Day L3 Global 250 m. MOD13Q1. NASA Land Processes Distributed Active Archive Center (LP DAAC), . https://lpdaac.usgs.gov/products/modis_products_table/mod13q1. Accessed 13 Feb. 2013

  • US Geological Survey (USGS) (2012) Famine Early Warning Systems Network (FEWS-NET). http://earlywarning.usgs.gov/fews. Accessed 16 Jan. 2013

  • United Nations Environment Programme (UNEP)/Center for International Earth Science Information Network (CIESIN) (2005) Gridded population of the world (GPW), v3. http://sedac.ciesin.columbia.edu/data/collection/gpw-v3. Accessed 16 Jan. 2013

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett 115:12–18

    Google Scholar 

  • Van den Berg, EC, Plarre C, Van den Berg HM, Thompson MW (2008) The South African National Land Cover 2000. Report no. GW/A/2008/86, Agricultural Research Council, Institute for Soil, Climate and Water, Pretoria

  • van Koppen B, Giordano M, Butterworth J, Mapedza E (2007) Community-based water law and water resource management reform in developing countries: rationale, contents and key messages. In: van Koppen B, Giordano M, Butterworth J (eds) Community-based water law and water resource management reform in developing countries. Cabi, Reading, UK, pp 1–11

  • van Weert F, van der Gun J, Reckman J (2009) Global overview of saline groundwater occurrence and genesis. IGRAC report no. GP 2009-1, IGRAC, Delft,The Netherlands, 104 pp

  • van Wyk E, van Tonder GJ, Vermeulen D (2011) Characteristics of local groundwater recharge cycles in South African semi-arid hard rock terrains: rainwater input. Water SA 37(2):147–154

    Google Scholar 

  • Wint GRW, Robinson TP (2007) Gridded livestock of the world. FAO report, 131 pp

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Xu Y, Beekman HE (2003) Groundwater recharge estimation in southern Africa. UNESCO IHP series no. 64, UNESCO, New York, 207 pp

  • Yeh H-F, Lee C-H, Hsu K-C, Chang P-H (2009) GIS for the assessment of the groundwater recharge potential zone. Environ Geol 58:185–195. doi:10.1007/s00254-008-1504-9

    Article  Google Scholar 

Download references

Acknowledgements

The work is a subcomponent within a larger project, funded by the Global Environmental Facility and the World Bank, on Groundwater and Drought Management in SADC (2007–2011), which is part of the Regional Groundwater Management Program (initiated in 1996) under the on-going Regional Strategic Action Plan (RSAP) for Integrated Water Resources Management and Development in SADC. The valuable inputs of SADC national representatives from central water resources management units are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen G. Villholth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villholth, K.G., Tøttrup, C., Stendel, M. et al. Integrated mapping of groundwater drought risk in the Southern African Development Community (SADC) region. Hydrogeol J 21, 863–885 (2013). https://doi.org/10.1007/s10040-013-0968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0968-1

Keywords

  • Groundwater drought
  • Risk mapping
  • Africa
  • Geographic information systems
  • Climate change