Advertisement

Hydrogeology Journal

, Volume 21, Issue 3, pp 643–654 | Cite as

Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA

  • Kolja RotzollEmail author
  • Stephen B. Gingerich
  • John W. Jenson
  • Aly I. El-Kadi
Report

Abstract

Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ∼0.01–0.4, estimated hydraulic conductivities are ∼20–800 m/day for peripheral wells, and ∼2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.

Keywords

Hydraulic properties Coastal aquifers Tidal effects Carbonate island karst Guam (USA) 

Etablissement des propriétés hydrauliques d’après l’atténuation de la marée dans l’Aquifère Lenticulaire du Nord de Guam, Territoire de Guam, USA

Résumé

Les atténuations du signal de la marée sont analysées pour évaluer les diffusivités et les conductivités hydrauliques régionales de l’Aquifère Lenticulaire du Nord de Guam (Océan Pacifique), USA. Les résultats indiquent un effet d’atténuation significatif de la marée en limite de la cote. Les diffusivités hydrauliques calculées en utilisant une solution analytique simple pour la réponse des puits à la pression de la marée près de la périphérie de l’île ont des amplitudes d’ordre de grandeur deux fois plus faibles à la périphérie qu’à l’intérieur. Sur la base d’une porosité efficace standard de ∼0.01–0.4, les conductivités hydrauliques estimées sont de ∼20–800 m/j d’après les puits de la périphérie et de ∼2,000–90,000 m/j pour d’après les puits de l’intérieur. La conductivité plus basse des roches de la périphérie comparativement à l’intérieur peut être expliquée pour le mieux par les effets de l’évolution du karst:(1) accroissement par dissolution de la conductivité hydraulique à l’intérieur; (2) induration de surface et réduction concomitante de la conductivité hydraulique locale dans les falaises et les formations rocheuses fortement pentées de la périphérie; et (3) à l’échelle régionale, influence plus forte d’une conductivité supérieure à l’intérieur comparativement à la périphérie. Un modèle numérique simple, calé sur les niveaux d’eau mesurés et les réponses à la marée, fournit des valeurs de la conductivité hydraulique et des paramètres d’emmagasinement, cohérentes avec la solution analytique. L’étude démontre que des techniques simples peuvent être utiles pour caractériser les propriétés d’un aquifère régional.

Charakterisierung der regionalen Grundwasserleitereigenschaften durch Gezeitenbeeinflusste Grundwasserschwankungen in Nord Guam (Pazifischer Ozean), USA

Zusammenfassung

Gezeitenbeeinflusste Grundwasserschwankungen werden analysiert, um die hydraulische Diffusivität und die regionalen hydraulische Leitfähigkeiten des Grundwasserleiters in Nord Guam (Pazifischer Ozean), USA, zu berechnen. Die Ergebnisse zeigen einen signifikanten Einfluss der Gezeitensignaldämpfung an der Küste. Hydraulische Diffusivität wurde mit einer einfachen analytische Lösung für gezeitenbeeinflusste Brunnen berechnet und ist zwei Größenordnungen niedriger in Brunnen entlang der Küste als in solchen im Inneren der Insel. Basierend auf zugeordneten Werten für Spezifischen Ertrag von ∼0.01–0.4, die geschätzten hydraulischen Leitfähigkeiten sind ∼20–800 m/tag für Brunnen entlang der Küste und ∼2,000–90,000 m/tag für Brunnen im Inland. Die niedrigere Leitfähigkeit der küstenahen Gesteinen im Verhältnis zu den Gesteinen im Inland kann am besten durch die Auswirkungen der Karst Entwicklung erklärt werden: (1) lösungsbedingte Steigerung der horizontalen hydraulischen Leitfähigkeit im Inland, (2) Verhärtung und gleichzeitige Reduzierung der lokalen hydraulischen Leitfähigkeit in den Klippen und steil geneigten Felsen der Peripherie und (3) stärkerer Einfluss der höheren Leitfähigkeit in regionalen Charakteristika im Inneren relativ zu der Peripherie. Ein einfaches numerisches Modell kalibriert mit gemessenen Wasserstände und Gezeitenschwankungen in Brunnen schätzt Werte für hydraulische Leitfähigkeit und Speicherkoeffizient im Einklang mit der analytischen Lösung. Die Studie zeigt, dass einfache Techniken zur Charakterisierung der regionalen Grundwasserleiter Eigenschaften nützlich sein können.

Estimación de las propiedades hidráulicas a partir de la atenuación de la marea en el acuífero Northern Guam Lens, Territorio de Guam, EEUU

Resumen

Se analiza la atenuación de las señales de las mareas para calcular la difusividad hidráulica y estimar la conductividad hidráulica regional del acuífero Northern Guam Lens, Territorio de Guam (Océano Pacifico), EEUU. Los resultados indican un significativo efecto de la amortiguación de las mareas en el borde costero. La difusividad hidráulica calculada usando una solución analítica simple en la respuesta de los pozos a las forzantes de la marea próximos a la periferia de las islas son de dos órdenes de magnitud más baja que para los pozos del interior de las islas. Sobre la base de almacenamientos específicos de ∼0.01–0.4, las conductividades hidráulicas son de ∼20–800 m/d para los pozos periféricos, y ∼2,000–90,000 m/d para los pozos interiores. La conductividad más baja de las rocas periféricas en relación a las rocas del interior puede ser mejor explicada por los efectos de la evolución kárstica: (1) aumento por disolución en la conductividad hidráulica en el interior; (2) cementación y reducción concurrente de la conductividad hidráulica local en los acantilados y rocas muy inclinadas de la periferia, y (3) la más fuerte influencia de la alta conductividad hidráulica de las características a escala regional en el interior en relación a la periferia. Un modelo numérico simple calibrado con los niveles de agua medidos y las respuestas de las mareas estimó valores de conductividad hidráulica y parámetros de almacenamiento consistentes con la solución analítica. El estudio demuestra que técnicas simples pueden ser útiles para la caracterización regional de las propiedades del acuífero.

利用潮汐衰减来评估水力学性质:以美国关岛的北关岛透镜体含水层为例

摘要

本文通过分析潮汐信号的衰减来计算和评价美国关岛(太平洋)的北关岛透镜体含水层的水力扩散性和区域渗透系数。研究结果指示了在海岸边界一个重要的潮汐阻尼效应。文中利用一个对岛外围潮汐力响应良好的简单解析解计算了水力扩散系数,计算结果比岛内井的水力扩散系数小了两个数量级。在指定的 ∼0.01–0.4的单位出水量的基础上,评估了外围井和内部井的渗透系数,分别为 ∼20–800 m/day和 ∼2000–90000 m/day。外围岩石的渗透系数相对于内部岩石较低,这可以用岩溶演化效应很好地解释:(1)内部岩石水平方向上渗透系数由于溶解作用而增大;(2)表面硬化和同时发生的位于外围悬崖和陡峭岩石的局部渗透系数的降低;(3)相对于外围岩石,内部岩石在区域尺度上高渗透性的特征的影响更强烈。通过建立一个用所测量的水位和潮汐的响应来校正的简单数值模型,本文评价了与解析解一致的渗透系数值和储存参数值。此项研究表明,简单的技术对于描述区域含水层的特征也可以非常有效。

Estimativa de propriedades hidráulicas a partir da atenuação de marés no Aquífero Lenticular do Norte de Guam, Território de Guam, EUA

Resumo

Analisam-se as atenuações dos sinais de maré para calcular as difusividades hidráulicas e estimar as condutividades hidráulicas regionais do Aquífero Lenticular do Norte de Guam, Território de Guam (Oceano Pacífico), EUA. Os resultados indicam um efeito de amortecimento de maré significativo na fronteira costeira. As difusividades hidráulicas calculadas utilizando uma solução analítica simples para as respostas dos poços às forças de maré próximas da periferia da ilha são duas ordens de magnitude mais baixas do que para os poços no interior da ilha. Com base na atribuição de cedências específicas de ∼0.01–0.4, as condutividades hidráulicas estimadas são de ∼20–800 m/d para os poços periféricos, e de ∼2,000–90,000 m/d para os poços interiores. A condutividade mais baixa das rochas periféricas em relação às rochas do interior pode ser melhor explicada pelos efeitos de evolução do carso: (1) aumento, por dissolução, da condutividade hidráulica horizontal no interior; (2) cimentação e redução simultânea da condutividade hidráulica local nas falésias e nas rochas muito inclinadas da periferia; e (3) a maior influência das caraterísticas de maior condutividade à escala regional no interior em relação à periferia. Um modelo numérico simples, calibrado com níveis de água medidos e respostas de maré, estima valores de condutividade hidráulica e de parâmetros de armazenamento consistentes com a solução analítica. O estudo demonstra que técnicas simples podem ser úteis para caraterizar propriedades de aquíferos regionais.

Notes

Acknowledgements

The authors thank T.K. Presley for collecting the recent groundwater-level data used in this study, and D.N. Contractor and R.H. Randall for helpful reviews of the original draft. Helpful comments and discussions of the final draft with J.E. Mylroie resulted in a more complete and precise interpretation of the carbonate-island karst model. D.L. Galloway, D.S. Oki, and three anonymous reviewers provided constructive comments that greatly improved this paper. This is contributed paper WRRC-CP-2013-06 of the Water Resources Research Center at the University of Hawaii at Manoa.

References

  1. Andersen Air Force Base Environmental Review (1995) Groundwater dye trace program and well cluster proposal for the landfill area. Guam final report, University of Guam Library, Univ. of Guam, Mangilao, GuamGoogle Scholar
  2. Ayers JF, Clayshulte RN (1984) A preliminary study of the hydrogeology of northern Guam. University of Guam Technical report 56, Water and Energy Research Institute of the Western Pacific, Univ. of Guam, Mangilao, GuamGoogle Scholar
  3. Barner WL (1995) Ground water flow in a young karst terrane developed along a coastal setting, northern Guam, Mariana Islands. In: Seminar field course: Beldibi/Antalya, Turkey: Int. Res. Appl. Cen. Karst Water Res., Karst Waters Institute, Leesburg, VAGoogle Scholar
  4. Barner WL (1997) Time of travel in the fresh water lens of northern Guam. Proceedings of the Eighth Symposium on the Geology of the Bahamas and Other Carbonate Regions. San Salvador, Bahamas, 30 May–3 June 1996Google Scholar
  5. Camp Dresser and McKee Inc. (1982) Northern Guam Lens Study, Groundwater Management Program, Aquifer Yield report, Final report, Guam Environmental Protection Agency, Barrigada, GuamGoogle Scholar
  6. Central Intelligence Agency (2012) Guam CIA world factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/gq.html. Accessed April 4 2012
  7. Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2): 207–250Google Scholar
  8. Cloud PE, Jr., Schmidt RG, Burke HW (1956) Geology of Saipan, Mariana Islands, part 1: general geology. US Geol Surv Prof Pap 280–AGoogle Scholar
  9. Contractor DN (1983) Numerical modeling of saltwater intrusion in the Northern Guam Lens. Water Resour Bull 19(5):745–751CrossRefGoogle Scholar
  10. Contractor DN, Srivastava R (1990) Simulation of saltwater intrusion in the Northern Guam Lens using a microcomputer. J Hydrol 118(1–4):87–106CrossRefGoogle Scholar
  11. Contractor DN, Srivastva R, Jenson JW, Jocson JM, Siegrist HG (1995) Modeling of the anisotropic Northern Guam aquifer using a 2D, FE sharp-interface saltwater intrusion model. EOS Trans 76(F262)Google Scholar
  12. Davis, RL, Johnson, CR Jr. (1989) Karst hydrology of San Salvador. In: Mylroie JE (ed) Proceedings of the Fourth Symposium on the Geology of the Bahamas. Bahamian Field Station, Cockburn Town, San Salvador, Bahamas, pp 118–135Google Scholar
  13. Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29(4):556–562CrossRefGoogle Scholar
  14. Ferris JG (1951) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. Assoc Int Hydrol Sci 2:148–155Google Scholar
  15. Flint DE (1949) Natural limestone walls of Okinawa (abstract). Geol Soc Am Bull 60(12):1968Google Scholar
  16. Flint DE, Corwin G, Dings MG, Fuller WD, MacNeil FS, Saplis RA (1953) Limestone walls of Okinawa. Geol Soc Am Bull 64(11):1247–1260CrossRefGoogle Scholar
  17. Gingerich SB, Jenson JW (2010) Groundwater availability study for Guam; goals, approach, products, and schedule of activities. US Geol Surv Fact Sheet 2010–3084Google Scholar
  18. Guo H, Jiao JJ, Li H (2010) Groundwater response to tidal fluctuation in a two-zone aquifer. J Hydrol 381(3–4):364–371CrossRefGoogle Scholar
  19. Jacob CE (1950) Flow of ground water. In: Rouse H (ed) Engineering hydraulics. Wiley, Hoboken, NJ, pp 321–386Google Scholar
  20. Jenson JW, Jocson JMU, Siegrist HG (1997) Groundwater discharge styles from an uplifted Pleistocene island karst aquifer, Guam, Mariana islands. In: Beck BF, Stephenson JB (eds) The engineering geology and hydrology of karst terranes. Balkema, Springfield, MI, pp 15–20Google Scholar
  21. Jenson JW, Keel TM, Mylroie JR, Mylroie JE, Stafford KW, Taborosi D, Wexel C (2006) Karst of the Mariana Islands: the interaction of tectonics, glacio-eustasy, fresh-water/salt-water mixing in island carbonates. Geol Soc Am Spec Pap 404:129–138Google Scholar
  22. Jocson JMU, Jenson JW, Contractor DN (2002) Recharge and aquifer response: Northern Guam Lens aquifer, Guam, Mariana Islands. J Hydrol 260(1–4):231–254CrossRefGoogle Scholar
  23. Johnson AG (2012) A water-budget model and estimates of groundwater recharge for Guam. US Geol Surv Sci Invest Rep 2012–5028Google Scholar
  24. Joint Guam Program Office (2010) Relocating marines from Okinawa: visiting aircraft carrier Berthing, and Army Air and Missile Defense Task Force. In: Guam Program Management Office (ed) Final environmental impact statement: Guam and CNMI military relocation. Naval Facilities Engineering Command, Pacific 322Google Scholar
  25. Li HL, Jiao JJ (2001) Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a leaky layer with storage. Adv Water Resour 24(5):565–573CrossRefGoogle Scholar
  26. Li HL, Jiao JJ (2002) Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Adv Water Resour 25(4):417–426CrossRefGoogle Scholar
  27. Li HL, Jiao JJ (2003) Influence of the tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer. Adv Water Resour 26(1):9–16CrossRefGoogle Scholar
  28. Li HL, Li G, Cheng J, Boufadel MC (2007) Tide-induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resour Res 43:W03404. doi: 10.1029/2005WR004724 Google Scholar
  29. Li L, Barry DA, Cunningham C, Stagnitti F, Parlange J-Y (2000) A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Adv Water Resour 23(8):825–833CrossRefGoogle Scholar
  30. Longman MW (1980) Carbonate diagenetic textures from near surface diagenetic environments. Am Assoc Petrol Geol Bull 64(4):461–487Google Scholar
  31. Merritt ML (2004) Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida. US Geol Surv Water Resour Invest Rep 2003–4267Google Scholar
  32. Mink JF, Vacher HL (1997) Hydrogeology of northern Guam. In: Vacher HL, Quinn T (eds) Geology and Hydrogeology of Carbonate Islands. Developments in sedimentology, vol 53, Elsevier, Amsterdam, pp 743–761Google Scholar
  33. Moran DC, Jenson JW (2004) Dry trace of groundwater from Guam International Airport and Harmon Sink to Agana Bay and Tumon Bay. Water and Environmental Research Institute of the Western Pacific, University of Guam technical report 97, University of Guam, Mangilao, GuamGoogle Scholar
  34. Mylroie JE, Jenson JW, Taborosi D, Jocson JMU, Vann DT, Wexel C (2001) Karst features on Guam in terms of a general model of carbonate island karst. J Cave Karst Stud 63(1):9–22Google Scholar
  35. Mylroie JE, Vacher HL (1999) A conceptual view of carbonate island karst. Karst Modeling Symposium, Charlottesville, VA, Feb 1999Google Scholar
  36. National Oceanographic and Atmospheric Administration (NOAA) (2012) Tides and currents, data retrieval of historic tide data. http://tidesandcurrents.noaa.gov/data_menu.shtml?stn=1630000%20Apra%20Harbor,%20Guam,%20MARIANAS%20ISLANDS&type=Datums. Accessed 13 Feb 2012
  37. Oberdorfer JA, Buddemeier RW (1986) Coral-reef hydrology: field studies of water movement within a barrier reef. Coral Reefs 5(1):7–12CrossRefGoogle Scholar
  38. OHM Remediation Services Corp. (1999) Groundwater Monitoring Program, Construction Battalion Landfill Removal Action. Final summary report, Public Works Center for PAC NAVFAC ENG COM, OHM Remediation Services Corp., Edison, NJGoogle Scholar
  39. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28(8):929–937CrossRefGoogle Scholar
  40. Reagan MK, Meijer A (1984) Geology and geochemistry of early arc-volcanic rocks from Guam. Geol Soc Am Bull 95(6):701–713CrossRefGoogle Scholar
  41. Rotzoll K, El-Kadi AI (2008) Estimating hydraulic properties of coastal aquifers using wave setup. J Hydrol 353(1–2):201–213CrossRefGoogle Scholar
  42. Rotzoll K, El-Kadi AI, Gingerich SB (2008) Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation. Ground Water 46(2):239–250CrossRefGoogle Scholar
  43. Siegrist HG, Randall RH (1992) Carbonate geology of Guam. Proceedings of the Seventh International Coral Reef Symposium, 18–20 June 1992, UOG Station, GuamGoogle Scholar
  44. Siegrist HG, Reagan MK (2008) Geologic map and sections of Guam, Mariana Islands. Revision of original map from USGS Professional Report 403A (1964) by Tracey JI, Jr., Schlanger SO, Stark JT, Doan DB, May HG. Field interpretations for 2008 revision assisted by Randall RH and Jenson JW. Water and Environmental Research Institute of the Western Pacific, University of Guam, Mangilao, GuamGoogle Scholar
  45. Su N, Liu F, Ahn V (2003) Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base. Environ Model Softw 18(10):937–942CrossRefGoogle Scholar
  46. Taboroši D, Jenson JW, Jocson JMU, Mylroie JE (2009) Coastal discharge features from an uplifted coastal island aquifer, northern Guam, Northern Mariana Islands. 15th International Congress of Speleology, Kerrville, TX, 19–25 July 2009Google Scholar
  47. Taboroši D, Jenson JW, Mylroie JE (2012) Field observations of coastal discharge from an uplifted carbonate island aquifer, northern Guam, Mariana Islands: a descriptive geomorphic and hydrogeologic perspective. J Coast Res. doi: 10.2112/JCOASTRES-D-12-00054.1
  48. Townley LR (1995) The response of aquifers to periodic forcing. Adv Water Resour 18(3):125–146CrossRefGoogle Scholar
  49. Tracey JI, Jr., Schlanger SO, Stark JT, Doan DB, May HG (1964) General geology of Guam. US Geol Surv Prof Pap 403–AGoogle Scholar
  50. Trefry MG (1999) Periodic forcing in composite aquifers. Adv Water Resour 22(6):645–656CrossRefGoogle Scholar
  51. Trefry MG, Bekele E (2004) Structural characterization of an island aquifer via tidal methods. Water Resour Res 40:W01505. doi: 10.1029/2003WR002003 CrossRefGoogle Scholar
  52. US Environmental Protection Agency (1978) Guam: sole or principal source aquifer designation. Federal Register 43 FR 17888, 26 April 1978Google Scholar
  53. Vacher HL (1978) Hydrogeology of Bermuda: significance of an across-the-island variation in permeability. J Hydrol 39(3–4):207–226CrossRefGoogle Scholar
  54. Vacher HL (1988) Dupuit-ghyben-herzberg analysis of strip-island lenses. Geol Soc Am Bull 100(4):850–591CrossRefGoogle Scholar
  55. Vacher HL, Mylroie JE (2002) Eogenetic karst from the perspective of an equivalent karst medium. Carbon Evapor 17(2):182–196CrossRefGoogle Scholar
  56. Vacher HL, Rowe MP (1997) Geology and Hydrogeology of Bermuda. In: Vacher HL, Quinn TM (eds) Geology and hydrogeology of carbonate islands. Developments in sedimentology, vol 53. Elsevier, Amsterdam, pp 35–90Google Scholar
  57. Vacher HL, Bengtsson TO, Plummer LN (1990) Hydrology of meteoric diagenesis: residence time of meteoric ground water in island fresh-water lenses with application to aragonite-calcite stabilization rate in Bermuda. Geol Soc Am Bull 102(2):223–232CrossRefGoogle Scholar
  58. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  59. Voss CI, Provost AM (2002) SUTRA, a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest 02–4231Google Scholar
  60. Ward PE, Hoffard SH, Davis DA (1965) Hydrology of Guam. US Geol Surv Prof Pap 403–HGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kolja Rotzoll
    • 1
    Email author
  • Stephen B. Gingerich
    • 2
  • John W. Jenson
    • 3
  • Aly I. El-Kadi
    • 1
  1. 1.Water Resources Research CenterUniversity of HawaiiHonoluluUSA
  2. 2.US Geological Survey, Pacific Islands Water Science CenterHonoluluUSA
  3. 3.Water and Environmental Research Institute of the Western PacificUniversity of GuamMangilaoUSA

Personalised recommendations