Hydrogeology Journal

, Volume 21, Issue 1, pp 149–169 | Cite as

Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets

  • S. S. Hubbard
  • C. Gangodagamage
  • B. Dafflon
  • H. Wainwright
  • J. Peterson
  • A. Gusmeroli
  • C. Ulrich
  • Y. Wu
  • C. Wilson
  • J. Rowland
  • C. Tweedie
  • S. D. Wullschleger
Paper

Abstract

The value of remote sensing and surface geophysical data for characterizing the spatial variability and relationships between land-surface and subsurface properties was explored in an Alaska (USA) coastal plain ecosystem. At this site, a nested suite of measurements was collected within a region where the land surface was dominated by polygons, including: LiDAR data; ground-penetrating radar, electromagnetic, and electrical-resistance tomography data; active-layer depth, soil temperature, soil-moisture content, soil texture, soil carbon and nitrogen content; and pore-fluid cations. LiDAR data were used to extract geomorphic metrics, which potentially indicate drainage potential. Geophysical data were used to characterize active-layer depth, soil-moisture content, and permafrost variability. Cluster analysis of the LiDAR and geophysical attributes revealed the presence of three spatial zones, which had unique distributions of geomorphic, hydrological, thermal, and geochemical properties. The correspondence between the LiDAR-based geomorphic zonation and the geophysics-based active-layer and permafrost zonation highlights the significant linkage between these ecosystem compartments. This study suggests the potential of combining LiDAR and surface geophysical measurements for providing high-resolution information about land-surface and subsurface properties as well as their spatial variations and linkages, all of which are important for quantifying terrestrial-ecosystem evolution and feedbacks to climate.

Keywords

Geomorphology Geophysical characterization Alaska Active layer Permafrost 

llQuantification de la relation entre les variations de la surface et de la subsurface du sol dans des environnements de pergélisol en utilisant LiDAR et un ensemble de données géophysiques

Resumé

La portée de la télédétection et des données géophysique de surface pour caractériser la variabilité spatiale et les relations entre la surface du terrain et les propriétés de la subsurface a été étudiée sous tous ses aspects dans l’écosystème de la plaine côtière d’Alaska (USA). Dans cette région, sur un site où la surface du sol est dominée par des polygones, une série de données se recoupant a été collectée, incluant : données LiDAR; géoradar, tomographie électromagnétique et résistivité; profondeur de la couche aquifère, température, teneur en humidité, texture, teneur en carbone et en azote du sol; et cations du fluide des pores. Les données Lidar ont été utilisées pour établir les cotes géomorphiques, qui peuvent indiquer un drainage potentiel. Des données géophysiques ont été utilisées pour déterminer la profondeur de la couche aquifère, la teneur en humidité du sol, et la variabilité du pergélisol. L’analyse par agglomérat des données LiDAR et des attributs géophysiques ont révélé la présence de trois zones spatiales ayant une distribution similaire des propriétés géomorphiques, hydrogéologiques, thermales et géochimiques. La correspondance entre la zonation géomorphique basée sur LiDAR, la couche aquifère selon la géophysique et la zonation permafrost, met en lumière la relation significative entre ces compartiments de l’écosystème. Cette étude montre le potentiel d’une combinaison des mesures LiDAR et des mesures géophysiques de surface pour fournir une information haute résolution sur les propriétés de surface et de subsurface du sol aussi bien que sur leur variations spatiales et liens, toutes étant importantes pour quantifier l’évolution de l’écosystème terrestre et les réponses au climat.

Cuantificación y relación de la superficie terrestre y la variabilidad subsuperficial en ambientes de permafrost utilizando un conjunto de datos LiDAR y geofísicos de superficie

Resumen

Se exploró el valor de los sensores remotos y de los datos geofísicos de superficie para caracterizar la variabilidad espacial y las relaciones entre la superficie y las propiedades subsuperficiales en un ecosistema de planicie costera en Alaska (EEUU). En este sitio, un conjunto anidado de medidas fue colectado dentro de una región donde la superficie estaba dominada por polígonos, incluyendo: datos LiDAR; datos de radar, electromagnéticos, y tomografías de resistividad eléctrica; profundidad de la capa activa, temperatura del suelo, contenido de humedad del suelo, textura del suelo, contenido de carbono y nitrógeno en suelo; y cationes del fluido de poros. Los datos LiDAR fueron usados para extraer los indicadores geomórficos, que posiblemente indican un drenaje potencial. Los datos geofísicos fueron para caracterizar la profundidad de la capa activa, el contenido de humedad del suelo y la variabilidad del permafrost. En análisis de cluster de los LiDAR y los atributos geofísicos revelaron la presencia espacial de tres zonas, que tenían una única distribución de propiedades geomórficas, hidrológicas, térmicas y geoquímicas. La correspondencia entre la zonación geomórfica basada en LiDAR y la capa activa basada en geofísica y la zonación del permafrost destaca la vinculación significativa entre estos compartimentos del ecosistema. Este estudio sugiere el potencial de la combinación LiDAR y las mediciones geofísicas de superficie para proveer información de alta resolución acerca de las propiedades de la superficie y de la subsuperficie así como su variación espacial y su articulación, todos los cuales son importantes para cuantificar la evolución del ecosistema terrestre y las reacciones con el clima.

利用激光雷达和地面地球物理数据来量化和关联地表和地下永久冻土环境的变化

摘要

用来描述地表和地下性质的空间变异性和两者之间的关系的遥感和地面地球物理数据已在阿拉斯加(美国)的一个沿海平原生态系统进行了探讨。在本次研究场地的一个表面呈多边形的区域收集到了一套测量数据,包括激光雷达数据;探地雷达数据,电磁和电阻断层扫描数据;活性层深度,土壤温度,土壤水气含量,土壤质地,土壤碳和氮的含量;以及孔隙流体阳离子数据。激光雷达数据用来提取地貌指标,这可能指示出潜在的排泄。地球物理数据用来刻画活性层的深度,土壤水气含量和永久冻土的变化特征。通过对激光雷达和地球物理数据属性的聚类分析发现了三个在地形,水文,热和地球化学性质分布上存在异常的空间区域。基于激光雷达测量的地貌分区与基于地球物理数据的活性层和永久冻土分区之间的对应关系突出了这些生态系统分区间的紧密联系。本次研究表明可以通过结合激光雷达和地表地球物理测量来为地表和地下的性质以及它们在空间上的变化和关系提供高分辨率的信息,所有这些对于量化陆地生态系统的演化和对气候变化的反应都是非常重要的。

Quantificando e relacionando a variabilidade da superfície do terreno com a variabilidade subsuperficial em ambientes de permafrost através do uso de LiDAR e de dados de geofísica de superfície

Resumo

Num ecossistema da planície costeira do Alaska (EUA) foi explorado o valor da deteção remota e de dados de geofísica de superfície para caracterizar a variabilidade espacial e as relações entre propriedades da superfície do terreno e da subsuperfície. Neste local, inserido numa região onde o terreno superficial é dominado por polígonos, foi recolhido um conjunto agregado de medições, incluindo: dados de LiDAR; dados de geoadar, eletromagnéticos e de tomografia de resistência elétrica; profundidade da camada ativa, temperatura do solo, teor de água no solo, textura do solo, teor de carbono e azoto no solo; e catiões no fluido poroso. Os dados LiDAR foram usados para extrair dimensões geomórficas que potencialmente indicam o potencial de drenagem. Os dados geofísicos foram usados para caracterizar a profundidade da camada ativa, o teor de humidade no solo e a variabilidade no permafrost. A análise grupal de atributos LiDAR e geofísicos revelou a presença de três zonas espaciais que tinham distribuições únicas de propriedades geomórficas, hidrológicas, térmicas e geoquímicas. A correspondência entre o zonamento geomórfico baseado no LiDAR e a zonação da camada activa baseada na geofísica e do permafrost, demonstra a significativa conexão entre estes compartimentos do ecossistema. Este estudo sugere o potencial da combinação de medições de LiDAR e de geofísica de superfície para fornecer informação de alta resolução acerca das propriedades da superfície do terreno e da subsuperfície, assim como sobre as variações espaciais e conexões, sendo todas elas importantes para a quantificação da evolução do ecossistema terrestre e as retroações com o clima.

References

  1. Allison I, Bindoff NL, Bindschadler RA, Cok PM, de Noblet N, England MH, Francis JE, Gruber N, Haywood AM, Karoly DJ, Kaser G, Le Quere C, Lenton TM, Mann ME, McNeill BJ, Pitman AJ, Rahmstorf S, Rignot E, Schellnhuber HJ, Schneider SH, Sherwood SC, Somerville RCJ, Steffen K, Steig EJ, Visbeck M, Weaver AJ (2009) The Copenhagen diagnosis, 2009: updating the world on the latest climate science. The University of New South Wales Climate Change Research Centre (CCRC), SydneyGoogle Scholar
  2. Annan P (2005) GPR methods for hydrogeological studies. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, New YorkGoogle Scholar
  3. Archie G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62Google Scholar
  4. Atekwana E, Slater L (2010) Biogeophysics: a new frontier in earth science research. Rev Geophys 47:RG4004. doi:10.1029/2009RG000285 CrossRefGoogle Scholar
  5. Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Heidelberg, pp 129–156Google Scholar
  6. Birchak JR, Gardner CZG, Hipp JE, Victor JM (1974) High dielectric constant microwave probes for sensing soil moisture. Proc IEEE 62(1):93–98CrossRefGoogle Scholar
  7. Bradford JH, McNamera JP, Boden W, Gooseff MN (2005) Measuring thaw depth beneath peat-lined arctic streams using ground-penetrating radar. Hydrol Process 19:2689–2699CrossRefGoogle Scholar
  8. Brosten TR, Bradford JH, McNamara JP, Zarnetske JP, Gooseff MN, Breck Bowden W (2006) Profiles of temporal thaw depths between two Arctic stream types using ground penetrating radar. Permafr Periglac Process 17:341–355CrossRefGoogle Scholar
  9. Brosten TR, Bradford JH, McNamara JP, Gooseff MN, Zarnetske JP, Bowden WB, Johnston ME (2009) Estimating 3D variation in active layer thickness beneath Arctic streams using ground penetrating radar. J Hydrol 373:479–486CrossRefGoogle Scholar
  10. Cavalli M, Tarolli P, Marchi L, Dalla Fontana G (2008) The effectiveness of airborne LiDAR data in the recognition of channel bed morphology. Catena 73:249–260CrossRefGoogle Scholar
  11. Chapin FS III, McGuire AD, Randerson J, Pielke R Sr, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Chang Biol 6:211–223CrossRefGoogle Scholar
  12. Christensen R (2002) Plane answers to complex questions: the theory of linear models, 3rd edn. Springer, New YorkGoogle Scholar
  13. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551CrossRefGoogle Scholar
  14. DePascale G, Pollard WH, Williams KK (2008) Geophysical mapping of ground ice using a combination of capacitive coupled resistivity and ground penetrating radar, Northwest Territories, Canada. J Geophys Res 113:FO2S90. doi:10.1029/2006JF000585 Google Scholar
  15. Engstrom R, Hope A, Kwon H, Stow D, Zamolodchiikov D (2005) Spatial distribution of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic Coastal Plain. Nord Hydrol 36(3):219–234Google Scholar
  16. Everett ME, Meju MA (2005) Near-surface controlled source electromagnetic induction: background and recent advances. In: Rubin Y, Hubbard S (eds) Hydrogeophysics, chap 6. Springer, Dordrecht, The NetherlandsGoogle Scholar
  17. Farquharson CG (2000) EM1DFM, University of British Columbia Geophysical Inversion Facility, Vancouver, BCGoogle Scholar
  18. Fraley C, Raftery A (2012) MCLUST version 4 for R: normal mixture modeling for model-based clustering, classification and density estimation. Technical report no. 597, Department of Statistics, University of Washington, Seatlle, WAGoogle Scholar
  19. Frankel KL, Dolan JF (2007) Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. J Geophys Res 112:F02025. doi:10.1029/2006JF000644 CrossRefGoogle Scholar
  20. Friedlingstein P, Coauthors (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model Intercomparison. J Clim 19:3337–3353Google Scholar
  21. Gangodagamage C, Belmont P, Foufoula-Georgiou E (2011) Revisiting scaling laws in river basins: new considerations across hillslope and fluvial regimes. Water Resour Res 47:W07508. doi:10.1029/2010WR009252 CrossRefGoogle Scholar
  22. Geonics (2009) EM38-MK2 ground conductivity meter operating manual. Geonics, Mississauga, ON, 42 ppGoogle Scholar
  23. Glenn NF, Streutker DR, Chadwick DJ, Tahckray GD, Dorsch SJ (2006) Analysis of LIDAR-derived topography information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148CrossRefGoogle Scholar
  24. Goswami S, Gamon JA, Tweedie CE (2011) Surface hydrology of an arctic ecosystem: multiscale analysis of flooding and draining experiment using spectral reflectance. J Geophys Res 116:G00I07. doi:10.1029/2010JG001346 CrossRefGoogle Scholar
  25. Guenther T, Ruecker C, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography: II, inversion. Geophys J Int 166(2):506–517CrossRefGoogle Scholar
  26. Harada K, Wada K, Fukuda M (2000) Permafrost mapping by transient electromagnetic method. Permafr Periglac Process 11:71–84CrossRefGoogle Scholar
  27. Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New YorkGoogle Scholar
  28. Hauck C, Kneisel C (2008) Applied geophysics in periglacial environments. Cambridge University Press, CambridgeGoogle Scholar
  29. Hauck C, Bottcher M, Maurer H (2010) A new model for quantifying subsurface ice content based on geophysical datasets. Cryosphere Discuss 4:787–821CrossRefGoogle Scholar
  30. Hayley K, Bentley LR, Gharibi M, Nightingale M (2007) Low temperature dependence of electrical resistivity: implications for near surface geophysical monitoring. Geophys Res Lett 34(18)Google Scholar
  31. Hilbich C (2010) Time-lapse refraction seismic tomography for the detection of ground ice degradation. Cryosphere 4:243–259CrossRefGoogle Scholar
  32. Hilbich C, Hauck C, Hoelzle M, Scherler M, Schudel L, Volksch I, Vonder Muhll D, Mausbacher R (2008) Monitoring mountain permafrost evolution using electrical resistivity tomography: a 7 year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. J Geophys Res 113:F01S90. doi:10.1029/2007JF000799 CrossRefGoogle Scholar
  33. Hinkel KM, Paetzold F, Nelson FE, Bockheim JG (2001a) Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob Planet Chang 29:293–309CrossRefGoogle Scholar
  34. Hinkel KM, Doolittle J, Bockheim JG, Nelson FE, Paetzold R, Kimble JM, Travis R (2001b) Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafr Periglac Process 12:179–190CrossRefGoogle Scholar
  35. Hinkel KM, Jones BM, Eisner WR, CuomoCJ, Beck RA, Frohn R (2007) Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J Geophys Res 112:F02S16, doi:10.1029/2006JF000584
  36. Hubbard S, Linde N (2011) Hydrogeophysics, chap 14. In: Wilderer P (ed) Treatise on water science, vol 1. Academic, Oxford, pp 401–434CrossRefGoogle Scholar
  37. Hubbard S, Rubin Y (2005) Hydrogeophysics. In: Rubin Y, Hubbard S (ed) Hydrogeophysics, Springer, Dordrecht, The NetherlandsGoogle Scholar
  38. Jansson JK, Tas N, Brodie EL, Graham DE, Kneafsey TJ, Torn MS, Wu Y, Wullschleger SD, Hubbard SS (2012) Horizontal and vertical profiling of microbial communities across landscape features at NGEE site, Barrow, AK. Fall AGU Meeting Abstract C31C-06, San Francisco, CAGoogle Scholar
  39. Jorgenson MT, Osterkamp TE (2005) Response of boreal ecosystems to varying modes of permafrost degradation. Can J For Res 35(9):2100–2111. doi:10.1139/x05-153 CrossRefGoogle Scholar
  40. Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33:L02503. doi:10.1029/2005GL024960 CrossRefGoogle Scholar
  41. Kemna A (2000) Tomographic inversion of complex resistivity: theory and application. PhD Thesis, Bochum Ruhr University, GermanyGoogle Scholar
  42. Klute A (1986) Methods of soil analysis, part 1: physical and mineralogical methods. Soil Science Society of America, Madison, WI, pp 399–404Google Scholar
  43. Kneisel C, Hauck C, Fortier R, Moorman B (2008) Advances in geophysical investigations for permafrost investigations. Permafr Periglac Process 19:157–178CrossRefGoogle Scholar
  44. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Koelbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi:10.1016/j.geoderma.2010 CrossRefGoogle Scholar
  45. Lashermes B, Foufoula-Georgiou E, Dietrich W (2007) Channel network extraction from high resolution topography using wavelets. Geophys Res Lett 34:L23S04. doi:10.1029/2007GL031140 CrossRefGoogle Scholar
  46. Lee H, Schuur EAG, Vogel JG (2010) Soil CO2 production in upland tundra where permafrost is thawing. J Geophys Res 115:G01009. doi:10.1029/2008JG000906 CrossRefGoogle Scholar
  47. Lee H, Schuur EAG, Vogel JG, Lavoie M, Bhadra D, Staudhammers CL (2011) A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob Chang Biol 17:1379–1393CrossRefGoogle Scholar
  48. Leffingwell E (1915) Ground-ice wedges: the dominant form of ground-ice on the north coast of Alaska. J Geol 23:635–654CrossRefGoogle Scholar
  49. Liljedahl, AK, Hinzman LD, Schulla J (2012) Ice-wedge polygon type controls low-gradient watershed-scale hydrology. Tenth International Conference on Permafrost, Salekhard, Russia, June 25–29, 2012Google Scholar
  50. Lipson DA, Zona D, Raab TK, Bozzolo F, Mauritz M, Oechel WC (2012) Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem. Biogeosciences 9:577–591CrossRefGoogle Scholar
  51. McKean J, Roering JJ (2004) Landslide detection and surface morphology mapping with airborne laser altimetry. Geomorphology 57:331–351. doi:10.1016/S0169-555X(03)00164-8 CrossRefGoogle Scholar
  52. McNeill JD (1980) Electromagnetic terrain conductivity measurement at low induction numbers, Technical note TN-6. Geonics, Mississauga, ON, 15 ppGoogle Scholar
  53. McNeill JD (1990) Use of electromagnetic methods for groundwater studies. In: Ward S (ed) Geotechnical and environmental geophysics, vol 1, Society of Exploration Geophysicists, Tulsa, OK, pp 191–218Google Scholar
  54. Minsley BJ, Smith BD, Hammack R, Sams JI, Veloski G (2012a) Calibration and filtering strategies for frequency domain electromagnetic data. J Appl Geophys 80:56–66CrossRefGoogle Scholar
  55. Minsley BJ, Abraham JD, Smith BD, Cannia JC, Voss CI, Jorgenson T, Walvoord MA, Wylie BK, Anderson L, Ball LB, Deszcz-Pan M, Wellman TP, Ager TA (2012b) Airborne electromagnetic imaging of discontinuous permafrost. Geophys Res Lett 39:L02503. doi:10.1029/2011GL050079 CrossRefGoogle Scholar
  56. Monroe JS, Doolittle JA, Kanevskiy MZ, Hinkle KM, Nelson FE, Jones BM, Shur Y, Kimble JM (2007) Application of ground penetrating radar imagery for three-dimensional visualization of near-surface structures in ice-rich permafrost, Barrow, Alaska. Permafr Periglac Process 18:309–321CrossRefGoogle Scholar
  57. Nelson FE, Anisimov OE, Shiklomonov OI (2001) Subsidence risk from thawing permafrost. Nature 410:889–890CrossRefGoogle Scholar
  58. Ramirez AL, Nitao JJ, Hanley WG, Aines R, Glaser RE, Sengupta SK, Dyer KM, Hickling TL, Daily WD (2005) Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach. J Geophys Res Solid Earth 110(B2):B02101CrossRefGoogle Scholar
  59. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, Austria. http://www.R-project.org. November 2012
  60. Revil A, Glover PWJ (1998) Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophys Res Lett 25(5):691–694CrossRefGoogle Scholar
  61. Rowland JC, Jones CE, Altmann G, Bryan R, Crosby BT, Geerneart LG, Hinzman LD, Kane DL, Lawrence DM, Mancino A, Marsh P, McNamara JP, Romanovsky UV, Toniolo H, Travis BJ, Trochim E, Wilson CJ (2010) Arctic landscapes in transition: responses to thawing permafrost. EOS Trans Am Geophys Union 91(26):229–230CrossRefGoogle Scholar
  62. Rowland JC, Gangodagamage C, Wilson CJ, Prancevic JP, Brumby SP, Marsh P, Crosby BT (2011), Scaling laws in Arctic permafrost river basins: statistical signature in transition. American Geophysical Union, Washington, DC, Abstract C41C-0424Google Scholar
  63. Scheibe T, Fang Y, Murray CJ, Roden E, Chen J, Chien Y, Brooks S, Hubbard SS (2006) Transport and biogeochemical reactions of metals in a chemically heterogeneous aquifer. Geosphere 2(4):220–235CrossRefGoogle Scholar
  64. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. doi:10.1038/nature08031 CrossRefGoogle Scholar
  65. Sellmann PV, Brown J, Lewellen RI, McKim H, Merry C (1975) The classification and geomorphic implication of thaw lakes on the Arctic Coastal Plain, Alaska. Research report 344, US Army CRREL, Hanover, NHGoogle Scholar
  66. Shiklomanov NI, Streletskiy DA, Nelson FE, Hollister RD, Romanovsky VE, Tweedie CE, Bockheim JG, Brown J (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res 115:G00I04CrossRefGoogle Scholar
  67. Sommerkorn M (2008) Micro-topographic patterns unravel controls of soil water and temperature on soil respiration in three Siberian tundra systems. Soil Biol Biogeochem 40:1792–1802. doi:10.1016/j.soilbio.2008.03.002 CrossRefGoogle Scholar
  68. Steelman CM, Endres AL (2009) Evolution of high-frequency ground-penetrating radar direct ground wave propagation during thin frozen soil layer development. Cold Reg Sci Technol 57:116–122CrossRefGoogle Scholar
  69. Steelman CM, Endres AL, van der Kruk J (2010) Field observations of shallow freeze and thaw processes using high frequency ground penetrating radar. Hydrol Process 24:2022–2033Google Scholar
  70. Sturm M, Racine CR, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:546–547CrossRefGoogle Scholar
  71. Sturtevant CS, Oechel WC, Zona D, Kim Y, Emerson CE (2012) Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska. Biogeosciences 9:1423–1440CrossRefGoogle Scholar
  72. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimo S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2023CrossRefGoogle Scholar
  73. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge, 792 ppGoogle Scholar
  74. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour Res 16:579–582CrossRefGoogle Scholar
  75. Triantafilis J, Santos FAM (2010) Resolving the spatial distribution of the true electrical conductivity with depth using EM38 and EM31 signal data and a laterally constrained inversion model. Aust J Soil Res 48(5):434–446CrossRefGoogle Scholar
  76. Wainwright H, Hubbard SS, Gangodagamage C. Dafflon B, Ulrich C, Wu Y, Wilson C, Tweedie C, Wullschleger S (2012) Multiscale Bayesian Fusion approach using geophysical and remote sensing data for characterizing arctic tundra hydrogeochemical properties, Tenth Int. Conf. on Permafrost, Salekhard, Russia, June 25–29Google Scholar
  77. Watanabe K, Wake T (2009) Measurements of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg Sci Technol 59:34–41CrossRefGoogle Scholar
  78. Westermann S, Wollschläger U, Boike J (2010) Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar. Cryosphere 4:475–487. doi:10.5194/tc-4-475-2010 CrossRefGoogle Scholar
  79. Wollschläger U, Gerhards H, Yu Q, Roth K (2010) Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site. Cryosphere 4:269–283. doi:10.5194/tc-4-269-2010 CrossRefGoogle Scholar
  80. Woo MK, Guan XJ (2006) Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment: Canadian High Arctic. Permafr Periglac Process 17:309–323CrossRefGoogle Scholar
  81. Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implications on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:W05414CrossRefGoogle Scholar
  82. Wu Y, Ajo-Franklin J, Spycher N, Hubbard SS, Zhang G, Williams KH, Taylor J, Fujita Y, Smith R (2011) Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem Trans 12(7): doi:10.1186/1467-4866-12-7
  83. Wu Y, Hubbard SS, Ulrich C, Wullshleger S (2012) Remote monitoring of freeze-thaw transitions in Arctic soils using the complex resistivity method. Vadose Zone J. doi:10.2136/vzj2012.0062
  84. Yoshikawa K, Leuschen, C, Ikeda A, Harada K, Gogineni P, Hoekstra P, Hinzman L, Sawada Y, Matsuoka N (2006) Comparison of geophysical investigations for detection of massive ground ice (pingo ice). J Geophys Res 111:E06S19Google Scholar
  85. Zimov SA, Schuur EAG, Chapin FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613CrossRefGoogle Scholar
  86. Zona D, Lipson DA, Zulueta RC, Oberbauer SF, Oechel WC (2011) Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain. J Geophys Res 116:G00I08. doi:10.1029/2009JG0011214 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2012

Authors and Affiliations

  • S. S. Hubbard
    • 1
  • C. Gangodagamage
    • 2
  • B. Dafflon
    • 1
  • H. Wainwright
    • 1
  • J. Peterson
    • 1
  • A. Gusmeroli
    • 3
  • C. Ulrich
    • 1
  • Y. Wu
    • 1
  • C. Wilson
    • 2
  • J. Rowland
    • 2
  • C. Tweedie
    • 4
  • S. D. Wullschleger
    • 5
  1. 1.Earth Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.International Arctic Research CenterUniversity of Alaska FairbanksFairbanksUSA
  4. 4.University of Texas at El PasoEl PasoUSA
  5. 5.Environmental Sciences Division, Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations