Hydrogeology Journal

, Volume 21, Issue 1, pp 201–220 | Cite as

The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada)

Paper

Abstract

The southern margin of permafrost is experiencing unprecedented rates of thaw, yet the effect of this thaw on northern water resources is poorly understood. The hydrology of the active layer on a thawing peat plateau in the wetland-dominated zone of discontinuous permafrost was studied at Scotty Creek, Northwest Territories (Canada), from 2001 to 2010. Two distinct and seasonally characteristic levels of unfrozen moisture were evident in the 0.7-m active layer. Over-winter moisture migration produced a zone of high ice content near the ground surface. The runoff response of a plateau depends on which of the three distinct zones of hydraulic conductivity the water table is displaced into. The moisture and temperature of the active layer steadily rose with each year, with the largest increases close to the ground surface. Permafrost thaw reduced subsurface runoff by (1) lowering the hydraulic gradient, (2) thickening the active layer and, most importantly, (3) reducing the surface area of the plateau. By 2010, the cumulative permafrost thaw had reduced plateau runoff to 47 % of what it would have been had there been no change in hydraulic gradient, active layer thickness and plateau surface area over the decade.

Keywords

Permafrost Hydrology Wetlands Runoff Canada 

Hydrologie de la couche productive d’un plateau tourbeux avec dégel du permafrost (Scotty Creek, Canada)

Résumé

La marge Sud du permafrost connaît actuellement un taux de dégel sans précédent, l’effet de ce dégel sur les ressources septentrionales en eau étant jusqu’à présent mal compris. L’hydrologie de la couche productive d’un plateau de tourbe en cours de dégel dans la zone de permafrost discontinu à dominante humide a été étudiée sur Scotty Creek, Territoires du Nord-Ouest canadien, de 2001 à 2010. Deux niveaux distincts non gelés à marques saisonnières sont évidents dans la couche productive 0.7-m. Une migration hivernale d’humidité produit en subsurface une zone de à teneur en glace élevée. La réponse d’un plateau en termes d’écoulement dépend de la zone dans laquelle, parmi les trois zones de conductivité hydraulique distinctes, l’aquifère se déplace. L’humidité et la température de la couche productive s’élèvent régulièrement chaque année, avec la plus grande augmentation à proximité de la surface du sol. La fonte du permafrost réduit l’écoulement de subsurface en (1) diminuant le gradient hydraulique (2) amincissant la couche productive, et le plus important, (3) en réduisant l’aire de la surface du plateau. En 2010, la fonte cumulée du permafrost a réduit l’écoulement du plateau de 47 % de ce qu’il aurait été s’il n’y avait pas eu de variation du gradient hydraulique, de l’épaisseur de l’horizon productif et de la surface du plateau durant la décade.

La capa hidrológica activa de un plateau de turba con deshielo del permafrost (Scotty Creek, Canada)

Resumen

El margen sur del permafrost está experimentando tasas de deshielo sin precedentes, sin embargo los efectos de este deshielo en los recursos de agua del norte es poco conocido. Se estudió la hidrología de la capa activa en la descongelación en un plateau de turba en la zona dominada por humedales en Scotty Creek, Northwest Territories (Canada), desde 2001 a 2010. Dos niveles distintos y característicos estacionalmente de humedad descongelada fueron evidentes en los 0.7-m de la capa activa. Durante el invierno la migración de humedad produce una zona de alto contenido de hielo cerca de la superficie del suelo. La respuesta del escurrimiento del Plateau depende de cual de las tres zonas diferenciadas de conductividad hidráulica de la capa freática se desplaza hacia el interior. La humedad y la temperatura de la capa activa aumentaron en forma constante cada año, con los mayores incrementos cercanos a la superficie del suelo. El deshielo del permafrost redujo el escurrimiento subsuperficial por (1) reducción del gradiente hidráulico, (2) engrosamiento de la capa activa y, lo más importante, (3) reducción de la superficie del área del plateau. Para el año 2010, el deshielo del permafrost acumulado ha reducido el escurrimiento del plateau a 47 % de lo que habría sido si no hubiera habido ningún cambio en el gradiente hidráulico, en el espesor de la capa activa y en la superficie del área de Plateau durante la década.

加拿大Scotty Creek泥炭高原融化的永久冻土活性层的水文研究

摘要

永久冻土南部边缘现今的融化速率是前所未有的,然而人们对于冻土融化对北部水资源的影响却知之甚少。从2001年到2010年,在加拿大西北地区的Scotty Creek,对融化泥炭高原上湿地占主导地位的冻土不连续地区的活性层的进行了水文研究。在活性层的0.7m深处,未凝结水汽的两种不同的和季节性的特征表现得很明显。越冬水汽的迁移在近地表面产生了高冰含量区。高原径流响应取决于地下水位被这三个水力传导系数截然不同的区域中的一个所取代。活性层的水汽和温度逐年稳步上升,在近地表面的增幅最大。冻土融化通过以下方式来减少地下径流量:i)降低水力梯度,ii)加厚活性层的厚度,最重要的一点是,iii)减少高原的表面积。截至2010年,累积的永久冻土融化已将高原径流量减少到47%,这是在假设水力梯度,活性层厚度和高原表面积在过去的十年中没有变化的情况下的径流量。

Hidrologia da camada ativa de um planalto turfoso com permafrost em fusão (Scotty Creek, Canadá)

Resumo

O limite sul do permafrost está a evidenciar um grau de fusão sem precedentes, e no entanto é mal conhecido o efeito desta fusão nos recuros hídricos nas regiões do norte. De 2001 a 2010 foi estudada a hidrologia da camada ativa num planalto de turfa em descongelação numa zona predominantemente húmida de um permafrost descontínuo, em Scotty Creek, Territórios do Noroeste (Canadá). Na camada ativa de 0.7 m eram evidentes dois níveis distintos e sazonalmente característicos de humidade não congelada. A migração da humidade ao longo do inverno produziu uma zona de alto teor de gelo perto da superfície do terreno. A resposta em termos de escoamento de um planalto depende para qual das três diferentes zonas de condutividade hidráulica a superfície hidrostática se desloca. A humidade e a temperatura da camada ativa subiram regularmente em cada ano, com os maiores aumentos mais perto da superfície. A fusão do permafrost reduziu o escoamento subsuperficial devido, (1) ao abaixamento do gradiente hidráulico, (2) ao espessamento da camada ativa e, o mais importante, (3) à redução da área superficial do planalto. Em 2010, a fusão cumulativa do permafrost tinha reduzido o escoamento no planalto a 47 % do que teria sido se ao longo da década não tivesse havido alteração do gradiente hidráulico, da espessura da camada ativa e da área superficial do planalto.

References

  1. Arain MA, Black TA, Barr AG, Griffis TJ, Morgenstern K, Nesic Z (2003) Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrol Process 17: 3581–3600CrossRefGoogle Scholar
  2. Aylesworth JM, Kettles IM (2000) Distribution of fen and bog in the Mackenzie Valley, 60°N–68°N. Geol Surv Can Bull 547, Natural Resources Canada, OttawaGoogle Scholar
  3. Beilman DW, Robinson SD (2003) Peatland permafrost thaw and landform type along a climate gradient. In: Phillips M, Springman SM, Arenson LU (eds) Proceedings of the Eighth International Conference on Permafrost, vol. 1. Balkema, Zurich, pp 61–65Google Scholar
  4. Carey SK, Woo M-K (2000) Within slope variability of ground heat flux, subarctic Yukon. Phys Geogr 21:407–417Google Scholar
  5. Childs EC (1971) Drainage of groundwater resting on a sloping bed. Water Resour Res 7:1256–1263CrossRefGoogle Scholar
  6. Dingman SL (2002) Physical hydrology, 2nd edn. Prentice Hall, Englewood Cliffs, NJ, 646 ppGoogle Scholar
  7. Hamlin L, Pietroniro A, Prowse T, Soulis R, Kouwen N (1998) Application of indexed snowmelt algorithms in a northern wetland regime. Hydrol Process 12:1641–1657CrossRefGoogle Scholar
  8. Hayashi M, Goeller N, Quinton W, Wright N (2007) A simple heat-conduction method for simulating the frost-table depth in hydrological models. Hydrol Process 21:2610–2622CrossRefGoogle Scholar
  9. Hegginbottom JA, Radburn LK (1992). Permafrost and ground ice conditions of northwestern Canada. Geological Survey of Canada Map 1691A, scale 1:1 000 000, GSC, OttawaGoogle Scholar
  10. Hoag RS, Price JS (1997) The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. J Contam Hydrol 28(3):193–205CrossRefGoogle Scholar
  11. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus Series A: Dynamic Meteorol Oceanogr 56:328–341CrossRefGoogle Scholar
  12. Jorgenson MT, Osterkamp TE (2005) Response of boreal ecosystems to varying modes of permafrost degradation. Can J For Res 35:2100–2111. doi:10.1139/X05-153 CrossRefGoogle Scholar
  13. Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG, Kanevskiy M, Marchenko S (2010) Resilience and vulnerability of permafrost to climate change. Can J For Res 40(7):1219–1236. doi:10.1139/X10-060 CrossRefGoogle Scholar
  14. Kwong J, Gan T (1994) Northward migration of permafrost along the Mackenzie Highway and climate warming. Clim Change 26:399–419CrossRefGoogle Scholar
  15. Lafleur PM, Schreader CP (1994) Water loss from the floor of a subarctic forest. Arct Alp Res 26:152–158CrossRefGoogle Scholar
  16. Lantz TC, Kokelj SV (2008) Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys Res Lett 35:L06502CrossRefGoogle Scholar
  17. Meteorological Service of Canada (MSC) (2011) National climate data archive of Canada. Environment Canada, Dorval, QBGoogle Scholar
  18. National Wetlands Working Group (NWWG) (1988) Wetlands of Canada: ecological land classification series, no. 24. Sustainable Development Branch, Environment Canada, Ottawa, and Polyscience Publ., Montreal, 452 ppGoogle Scholar
  19. Pomeroy JW, Gray DM, Brown T, Hedstrom NR, Quinton WL, Granger RJ, Carey S (2007) The cold regions hydrological model, a platform for basing process representation and model structure on physical evidence. Hydrol Process 21:2650–2667CrossRefGoogle Scholar
  20. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev 100(2): 81–92CrossRefGoogle Scholar
  21. Quinton WL, Gray DM (2003) Subsurface drainage from organic soils in permafrost terrain: the major factors to be represented in a runoff model. Refereed Proceedings of the 8th International Conference on Permafrost, Davos, Switzerland, July 2003, 6 ppGoogle Scholar
  22. Quinton WL, Hayashi M (2007) Recent advances toward physically-based runoff modeling of the wetland-dominated, Central Mackenzie River Basin. Cold Region Atmospheric and Hydrologic Studies. In: Woo M-K (ed) The Mackenzie GEWEX experience, vol 2: hydrological processes. Springer, Heidelberg, Germany, pp 257–279Google Scholar
  23. Quinton WL, Gray DM, Marsh P (2000) Subsurface drainage from hummock covered hillslopes in the Arctic Tundra. J Hydrol 237:113–125CrossRefGoogle Scholar
  24. Quinton W, Hayashi M, Pietroniro A (2003) Connectivity and storage functions of channel fens and flat bogs in northern basins. Hydrol Process 17:3665–3684CrossRefGoogle Scholar
  25. Quinton WL, Carey SK, Pomeroy JW (2005) Soil water storage and active-layer development in a sub-alpine tundra hillslope, southern Yukon Territory, Canada. Permafrost Periglacial Process 16:369–382CrossRefGoogle Scholar
  26. Quinton WL, Hayashi M, Carey SK (2008) Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrol Process 22:2829-2837. doi:10.1002/hyp.7027 CrossRefGoogle Scholar
  27. Quinton WL, Hayashi M, Chasmer LE (2011) Permafrost-thaw-induced land-cover change in the Canadian subarctic: implications for water resources. Hydrol Process (Scientific Briefing) 25:152–158. doi:10.1002/hyp.7894 CrossRefGoogle Scholar
  28. Rawlins M, Ye H, Yang D, Shiklomanov A, McDonald KC (2009) Divergence in seasonal hydrology across northern Eurasia: emerging trends and water cycle linkages. J Geophys Res 114:D18119. doi:10.1029/2009JD011747 CrossRefGoogle Scholar
  29. Robinson SD, Moore TR (2000) The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arct Antarct Alp Res 32:155–166CrossRefGoogle Scholar
  30. Rowland JC, Jones CE, Altmann G, Bryan R, Crosby BT, Geernaert GL, Hinzman LD, Kane DL, Lawrence DM, Mancino A, Marsh P, Mcnamara JP, Romanovsky VE, Toniolo H, Travis BJ, Trochim E, Wilson CJ (2010) Arctic landscapes in transition: responses to thawing permafrost. Eos 91(26):229. doi:10.1029/2010EO260001 CrossRefGoogle Scholar
  31. Smith MW, Riseborough DW (2002) Climate and the limits of permafrost: a zonal analysis. Permafrost Periglacial Process 13:1–15CrossRefGoogle Scholar
  32. St. Jacques JM, Sauchyn DJ (2009) Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys Res Lett 36:L01401CrossRefGoogle Scholar
  33. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  34. Thie J (1974) Distribution and thawing of permafrost in the southern part of the discontinuous permafrost zone in Manitoba. Arctic 27:189–200Google Scholar
  35. Woo M-K (1986) Permafrost hydrology in North America. Atmos Ocean 24(3):201–234CrossRefGoogle Scholar
  36. Wright N, Quinton WL, Hayashi M (2008) Hillslope runoff from ice cored peat plateaus in a discontinuous permafrost basin, Northwest Territories, Canada. Hydrol Process 22:2816–2828CrossRefGoogle Scholar
  37. Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:W05414CrossRefGoogle Scholar
  38. Zoltai SC (1993) Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada. Arct Alp Res 25:240–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Cold Regions and Water ScienceWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations