Hydrogeology Journal

, Volume 21, Issue 1, pp 93–106 | Cite as

Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA)

  • J. C. Koch
  • S. A. Ewing
  • R. Striegl
  • D. M. McKnight
Paper

Abstract

In high-latitude catchments where permafrost is present, runoff dynamics are complicated by seasonal active-layer thaw, which may cause a change in the dominant flowpaths as water increasingly contacts mineral soils of low hydraulic conductivity. A 2-year study, conducted in an upland catchment in Alaska (USA) underlain by frozen, well-sorted eolian silt, examined changes in infiltration and runoff with thaw. It was hypothesized that rapid runoff would be maintained by flow through shallow soils during the early summer and deeper preferential flow later in the summer. Seasonal changes in soil moisture, infiltration, and runoff magnitude, location, and chemistry suggest that transport is rapid, even when soils are thawed to their maximum extent. Between June and September, a shift occurred in the location of runoff, consistent with subsurface preferential flow in steep and wet areas. Uranium isotopes suggest that late summer runoff erodes permafrost, indicating that substantial rapid flow may occur along the frozen boundary. Together, throughflow and deep preferential flow may limit upland boreal catchment water and solute storage, and subsequently biogeochemical cycling on seasonal to annual timescales. Deep preferential flow may be important for stream incision, network drainage development, and the release of ancient carbon to ecosystems.

Keywords

Rainfall/runoff Permafrost Pipeflow Solute transport Alaska (USA) 

Ecoulement rapide par conduit superficiel et flux profond préférentiel dans un bassin versant boréal sous-jacent à un silt gelé (Alaska, USA)

Résumé

Dans les bassins versants de haute latitude où le permafrost est présent, les dynamiques de lessivage et d’écoulement sont compliquées par le dégel saisonnier des couches productives, qui peut causer une modification des chenaux principaux si l’eau entre progressivement en contact avec des sols minéraux à conductivité hydraulique basse. Une étude de deux ans, menée sur un bassin versant de hautes terres en Alaska (USA) sous-jacent à silt éolien bien calibré gelé, a examiné les changements d’infiltration et d’écoulement avec la dégel. On a pris comme hypothèse qu’un écoulement rapide serait soutenu par un flux à travers des sols peu épais au cours du début de l’été et par un flux préférentiel profond plus tard durant l’été. Les variations saisonnières d’eau du sol, infiltration et intensité du ruissellement, localisation et chimie, suggèrent que le transport est rapide, même au maximum d’extension du dégel. Entre juin et septembre, l’emplacement de l’écoulement change, en rapport avec l’écoulement préférentiel de subsurface, dans les zones en pentes et humides. Des isotopes de l’uranium suggèrent que l’écoulement d’été tardif érode le permafrost, indiquant qu’un écoulement rapide substantiel peut savoir lieu le long de la limite gelée. Simultanément, l’écoulement superficiel et l’écoulement préférentiel profond peuvent limiter le bassin versant du plateau boréal et l’emmagasinement de soluté, et subséquemment le cycle biochimique aux échelles saisonnière à annuelle. L’écoulement profond préférentiel peut être important pour la coupure du flot, le développement du réseau de drainage et la restitution de carbone ancien à l’écosystème.

Escurrimiento rápido vía flujo horizontal somero y flujo preferencial más profundo en una cuenca boreal subyacente a sedimentos congelados (Alaska, EEUU)

Resumen

En las cuencas de altas latitudes donde el permafrost está presente, la dinámica de lixiviación y escurrimiento se complican por el deshielo estacional de la capa activa, que puede causar un cambio en las trayectorias dominantes del flujo de agua cada vez más en contacto con suelos minerales de baja conductividad hidráulica. Un estudio de dos años de duración, realizado en una cuenca alta de Alaska (EEUU) sustentada por limos eólicos congelados, bien ordenados, examinó los cambios en la infiltración y el escurrimiento con el deshielo. La hipótesis fue que el escurrimiento rápido podría ser mantenido por el flujo a través de suelos someros a principios del verano y por el flujo preferencial más profundo después del verano. Los cambios estacionales en la humedad del suelo, infiltración, la magnitud del escurrimiento, la ubicación y la química sugieren que el transporte es rápido, incluso cuando los suelos están descongelados en su máxima extensión. Entre junio y septiembre se produjo un cambio en la ubicación del escurrimiento, consistente con el flujo subsuperficial preferencial de zonas escarpadas y húmedas. Los isótopos de uranio sugieren que a finales del verano el escurrimiento erosiona el permafrost, lo que indica que un sustancial flujo rápido puede ocurrir a lo largo del límite congelado. Conjuntamente, el flujo horizontal somero y el flujo profundo preferencial pueden limitar el agua de la cuenca boreal alta y el almacenamiento de solutos, y posteriormente el ciclo biogeoquímico en escalas de tiempo estacionales a anuales. El flujo profundo preferencial puede ser importante para la incisión corriente, para el desarrollo de la red de drenaje, y para la liberación de carbono antiguo a los ecosistemas

美国阿拉斯加州冻土上北向流域内通过浅部径流和深部优先流实现的快速径流

摘要

高纬度流域内的冻土永久存在,季节性活动层消融导致的淋滤及径流的动力学复杂,会引起由于水与低水力传导系数的矿质土壤接触增加而发生的主导流径的变化。美国阿拉斯加州山地流域下伏分选好的风成冻土,在该区对融水的渗透及径流变化监测两年。假定快速流可通过夏季初的浅层土壤以及夏季晚期的深层优先流维持。土壤水分、渗透量、径流量、位置以及化学结果的季节性变化表明即使土壤解冻到最大程度,径流也是迅速的。六月到九月,径流的位置存在转变,与陡湿区地下优先流相一致。铀同位素显示晚夏的径流消融了永久冻土,表明大量快速流在冻土边界发生。同时,浅部径流及深部优先流限制了山地北面流域中水及溶质的存储以及随后的季节及多年时间尺度上的生物地球化学循环。深部优先流对于河流切割、排水网络发育、以及古代碳向生态系统中的排放是有意义的。

Escoamento rápido via escoamento subsuperficial e fluxo preferencial profundo numa bacia boreal em siltes congelados (Alasca, EUA)

Resumo

Nas bacias localizadas a altas latitudes onde ocorre permafrost, a dinâmica de lixiviação e de escoamento é dificultada pelo degelo sazonal da camada ativa, o qual pode causar uma mudança nos sentidos de fluxo dominantes enquanto a água aumenta o contacto com solos minerais de baixa condutividade hidráulica. Um estudo de dois anos realizado na cabeceira de uma bacia hidrográfica no Alasca (EUA) coberta por material congelado, siltes eólicos bem calibrados, observou variações na infiltração e no escoamento durante o degelo. Admitiu-se a hipótese que o escoamento rápido seria mantido pelo fluxo através dos solos superficiais durante o princípio do verão e que o fluxo preferencial mais profundo ocorreria no final do verão. As variações sazonais na grandeza da humidade do solo, da infiltração e do escoamento, na localização e no quimismo sugerem que o transporte é rápido, mesmo quando os solos sofrem descongelação na sua máxima extensão. Entre junho e setembro ocorreu um deslocamento da posição do escoamento, consistente com fluxo subsuperficial preferencial em áreas declivosas e húmidas. Os isótopos de urânio sugerem que o escoamento do fim do verão erode o permafrost, indicando que este fluxo rápido substancial pode ocorrer ao longo da fronteira de congelação. O escoamento subsuperficial e o fluxo preferencial profundo podem em conjunto limitar o armazenamento de água e de solutos nas bacias superiores em zonas boreais e, subsequentemente, o ciclo biogeoquímico às escalas sazonal a anual. O fluxo preferencial profundo pode ser importante para a incisão das linhas de água, o desenvolvimento da rede de drenagem e a libertação do carbono antigo para os ecossistemas.

References

  1. Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res 112:G03003Google Scholar
  2. Andersen MB, Erel Y, Bourdon B (2009) Experimental evidence for 234U–238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochim Cosmochim Acta 73(14):4124–4141CrossRefGoogle Scholar
  3. Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18(5):1311–1325CrossRefGoogle Scholar
  4. Bockheim JG, Hinkel KM (2005) Characteristics and significance of the transition zone in drained thaw-lake basins of the Arctic Coastal Plain, Alaska. Arctic 58(4):406–417Google Scholar
  5. Bolton WR, Hinzman L, Yoshikawa K (2004) Water balance dynamics of three small catchments in a sub-Arctic boreal forest. IAHS-AISH Publ 290, IAHS, Wallingford, UK, pp 213–223Google Scholar
  6. Brosten TR, Bradford JH, McNamara JP, Zarnetske JP, Gooseff MN, Bowden WB (2006) Profiles of temporal thaw depths beneath two arctic stream types using ground-penetrating radar. Permafr Periglac Process 17(4):341–355CrossRefGoogle Scholar
  7. Carey SK (2003) Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafr Periglac Process 14(2):161–171CrossRefGoogle Scholar
  8. Carey SK, Woo MK (2000) The role of soil pipes as a slope runoff mechanism, Subarctic Yukon, Canada. J Hydrol 233(1–4):206–222CrossRefGoogle Scholar
  9. Carey SK, Woo MK (2001) Slope runoff processes and flow generation in a subarctic, subalpine catchment. J Hydrol 253(1–4):110–129CrossRefGoogle Scholar
  10. Carey SK, Woo MK (2002) Hydrogeomorphic relations among soil pipes, flow pathways, and soil detachments within a permafrost hillslope. Phys Geogr 23(2):95–114Google Scholar
  11. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769CrossRefGoogle Scholar
  12. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New YorkGoogle Scholar
  13. Cozzetto K (2009) Controls on stream and hyporheic temperatures, Taylor Valley, Antarctica, and large-scale climate influences on interannual flow variation in the Onyx River, Antarctica. PhD Thesis, University of Colorado, USAGoogle Scholar
  14. DePaolo DJ, Maher K, Christensen JN, McManus J (2006) Sediment transport time measured with U-series isotopes: results from ODP North Atlantic drift site 984. Earth Planet Sci Lett 248(1–2):379–395Google Scholar
  15. Dingman SL (1971) Hydrology of the Glenn Creek Watershed, Tanana River Basin, Central AlaskaRep. US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 115 ppGoogle Scholar
  16. Dingman SL (1994) Physical hydrology. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  17. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–190CrossRefGoogle Scholar
  18. Ewing SA, Paces JB, O’Donnell J, Kanevskiy M, Aiken G, Jorgenson MT, Shur Y, Striegl RG (2010) Uranium isotopes in Pleistocene permafrost: evaluating the age of ancient ice. Abstract C31A-0506 presented at AGU Fall Meeting, San Francisco, CA, 13–17 December 2010Google Scholar
  19. Fleischer RL (1980) Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects. Science 207(4434):979–981CrossRefGoogle Scholar
  20. Freeze AR, Cherry J (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  21. French H, Shur Y (2010) The principles of cryostratigraphy. Earth Sci Rev 101(3–4):190–206CrossRefGoogle Scholar
  22. Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19(2):95–110CrossRefGoogle Scholar
  23. Jencso KG, McGlynn BL, Gooseff MN, Wondzell SM, Bencala KE, Marshall LA (2009) Hydrologic connectivity between landscapes and streams: transferring reach- and plot-scale understanding to the catchment scale. Water Resour Res 45(4):W04428, 15 ppGoogle Scholar
  24. Jones JA (2010) Soil piping and catchment response. Hydrol Process 24(12):1548–1566CrossRefGoogle Scholar
  25. Jones JB, Rinehart AJ (2010) The long-term response of stream flow to climatic warming in headwater streams of interior Alaska. Can J For Res 40(7):1210–1218CrossRefGoogle Scholar
  26. Kane DL, Stein J (1983) Water movement into seasonally frozen soils. Water Resour Res 19(6):1547–1557CrossRefGoogle Scholar
  27. Kane DL, Hinzman LD, Benson CS, Everett KR (1989) Hydrology of Imnavait Creek, an arctic watershed. Holarctic Ecol 12:262–269Google Scholar
  28. Kane ES, Valentine DW, Schuur EAG, Dutta K (2005) Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Can J For Res 35:2118–2129CrossRefGoogle Scholar
  29. Kanevskiy M, Shur Y, Connor B, Dillon M, Stephani E, O’Donnell J (2012), Study of the ice-rich syngenetic permafrost for road design (interior Alaska). In: Hinkel KM (ed) Proceedings of the Tenth International Conference on Permafrost. Vol 1, International contributions. Salekhard, Russia, June 25–29, 2012, The Northern Publisher, Salekhard, Russia, pp 191–196Google Scholar
  30. Kigoshi K (1971) Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science 173(3991):47–48CrossRefGoogle Scholar
  31. Kilpatrick FA, Cobb ED (1985) Measurement of discharge using tracers, techniques of Water Resources Investigations, Book 3, Chapter A16, US Geological Survey, Reston, VAGoogle Scholar
  32. Koch JC, McKnight DM, Neupauer R (2011) Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model. Water Resour Res 47:W05530CrossRefGoogle Scholar
  33. Kraemer T, Brabets T (2012) Uranium isotopes (234U/238U) in rivers of the Yukon Basin (Alaska and Canada) as an aid in identifying water sources, with implications for monitoring hydrologic change in arctic regions. Hydrogeol J 20(3):469–481CrossRefGoogle Scholar
  34. Lyon SW, Destouni G, Giesler R, Humborg C, Morth M, Seibert J, Karlsson J, Troch PA (2009) Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrol Earth Syst Sci 13(5):595–604CrossRefGoogle Scholar
  35. McNamara JP, Kane DL, Hinzman LD (1997) Hydrograph separations in an arctic watershed using mixing model and graphical techniques. Water Resour Res 33(7):1707–1719CrossRefGoogle Scholar
  36. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  37. O’Donnell JA, Harden JW, McGuire AD, Kanevskiy MZ, Jorgenson MT, Xu X (2011) The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob Chang Biol 17(3):1461–1474CrossRefGoogle Scholar
  38. Payn RA, Gooseff MN, McGlynn BL, Bencala KE, Wondzell SM (2009) Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States. Water Resour Res 45(11): W11427Google Scholar
  39. Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111:G02020Google Scholar
  40. Petrone KC, Hinzman LD, Shibata H, Jones JB, Boone RD (2007) The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol Process 21(4):423–434CrossRefGoogle Scholar
  41. Prokushkin AS, Kajimoto T, Prokushkin SG, McDowell WH, Abaimov AP, Matsuura Y (2005) Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous-permafrost Siberian watershed. Can J For Res-Rev Can De Rech Forestiere 35(9):2130–2140CrossRefGoogle Scholar
  42. Quinton WL, Marsh P (1998) The influence of mineral earth hummocks on subsurface drainage in the continuous permafrost zone. Permafr Periglac Process 9(3):213–228CrossRefGoogle Scholar
  43. Quinton WL, Marsh P (1999) A conceptual framework for runoff generation in a permafrost environment. Hydrol Processes 13(16 Spec Issue):2563–2581Google Scholar
  44. Risse LM, Nearing MA, Savabi MR (1994) Determining the Green-Ampt effect hydraulic conductivity from rainfall-runoff data for the WEPP model. Trans Am Soc Agric Eng 37(2):411–418Google Scholar
  45. Roulet NT, Woo MK (1986) Hydrology of a wetland in the continuous permafrost region. J Hydrol 89(1–2):73–91CrossRefGoogle Scholar
  46. Schuur EAG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58(8):701–714CrossRefGoogle Scholar
  47. Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafr Periglac Process 16(1):5–17CrossRefGoogle Scholar
  48. Shur Y, Kanevskiy M, Dillon M, Stephani E, O’Donnell J (2010) Geotechnical investigations for the Dalton Highway innovation project as a case study of the ice-rich syngenetic permafrost. Report no. FHWA-AK-RD-10-06, Alaska Dept. of Transportation, Juneau, AKGoogle Scholar
  49. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32(21): L21413Google Scholar
  50. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  51. Viereck LA, Dryness CT, Batten AR, Wenzlick KJ (1992) The Alaska vegetation classification. Technical report PNW-GRR-286, Pacific Northwest Research Station, Portland, ORGoogle Scholar
  52. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34(12):L12402Google Scholar
  53. Wang G, Hu H, Li T (2009) The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol 375(3–4):438–449CrossRefGoogle Scholar
  54. Zarnetske JP, Gooseff MN, Brosten TR, Bradford JH, McNamara JP, Bowden WB (2007) Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams. Water Resour Res 43(7)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2012

Authors and Affiliations

  • J. C. Koch
    • 1
  • S. A. Ewing
    • 2
  • R. Striegl
    • 3
  • D. M. McKnight
    • 4
  1. 1.US Geological SurveyAlaska Science CenterAnchorageUSA
  2. 2.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  3. 3.US Geological SurveyBranch of Regional ResearchBoulderUSA
  4. 4.Department of Civil, Environmental, and Architectural EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations