Hydrogeology Journal

, Volume 21, Issue 2, pp 515–520 | Cite as

Measuring saturated hydraulic conductivity and anisotropy of peat by a modified split-container method

  • Ranjeet M. Nagare
  • Robert A. Schincariol
  • Aaron A. Mohammed
  • William L. Quinton
  • Masaki Hayashi
Technical Note

Abstract

Long-term changes in the physical and hydraulic properties of peat result from the decomposition and consolidation processes. The saturated hydraulic conductivity (Ks) of peat is depth-dependent and could increase or decrease with depth; therefore, Ks determination on a large number of samples is required to more accurately assess field variability. The cube method is a popular laboratory procedure to determine Ks because it allows use of smaller sample dimensions, while minimizing edge effects. This article describes the design and use of an alternate split container to enclose undisturbed peat cubes during measurement of Ks and the application of this method to a field site in Northwest Territories, Canada. The method allows for simpler and more controlled Ks measurements while also permitting anisotropy measurements. Matched tests on identical samples (Ks range 21–314 m/d), using the split-container and wax methods, showed a good agreement for intermediate Ks values; however, significant deviations occurred for low and high Ks values. Hydraulic-conductivity measurements taken on field samples showed a decrease with depth and exhibited anisotropic hydraulic conductivity as expected based on previous studies.

Keywords

Peat Hydraulic properties Laboratory experiments/measurements Cube method Split container 

Mesure le la conductivité et de l’anisotropie de la tourbe par une méthode split-container modifiée

Résumé

Les changements à long terme des propriétés physiques et hydrauliques de la tourbe résultent de processus de décomposition et de consolidation. La conductivité hydraulique (Ks) de la tourbe saturée dépend de la profondeur et peut augmenter ou diminuer avec celle-ci; c’est pourquoi la détermination de Ks sur un grand nombre d’échantillons est requise pour évaluer de façon plus précise à la variabilité sur le terrain. La méthode du cube est une procédure de laboratoire courante pour déterminer Ks parce qu’elle permet l’utilisation d’un échantillon de plus petites dimensions, tout en minimisant les effets de bordure. L’article décrit la conception et l’utilisation d’un autre conteneur pour enfermer des cubes de tourbe non perturbés durant la mesure de Ks et l’application de cette méthode à un site de terrain dans les Territoires du Nord-Ouest, Canada. La méthode autorise des mesure de (Ks) plus simples et mieux contrôlées tout en permettant aussi des mesures d’anisotropie. Des tests comparatifs effectués sur des échantillons identiques (échelle Ks 21–314 m/d), en utilisant les méthodes split-container et à la cire, ont montré un bon accord pour des valeurs moyennes de (Ks); toutefois des écarts importants sont apparus pour les valeurs basses et hautes de Ks. Les mesures de conductivité hydraulique faites sur des échantillons de terrain ont montré une décroissance avec la profondeur et présenté une anisotropie de conductivité hydraulique comme attendu sur la base des études précédentes.

Medición de la conductividad hidráulica saturada y la anisotropía de la turba por un método modificado de contenedores fraccionados

Resumen

Los cambios a largo plazo en las propiedades hidráulicas y físicas de la turba resultan de los procesos de descomposición y consolidación. La conductividad hidráulica saturada (Ks) de una turba depende de la profundidad y podría aumentar o disminuir con la profundidad; por lo tanto se requiere la determinación de Ks en un número grande de muestras para evaluar más precisamente la variabilidad del campo. El método del cubo es un procedimiento popular de laboratorio para determinar Ks porque permite el uso de muestras de pequeñas dimensiones, mientras se minimizan los efectos de borde. Este trabajo describe el diseño y uso de un contenedor fraccionado alternativo para encerrar cubos de turba no disturbados durante la medición de Ks y la aplicación de este método a un sitio de campo en Northwest Territories, Canada. El método permite medidas de Ks más simples y más controladas mientras que también permite las medidas de la anisotropía. Las pruebas comparadas de muestras idénticas (con un intervalo de Ks entre 21–314 m/d), usando los contenedores fraccionados y métodos de cera, mostraron un buen acuerdo para valores intermedios de Ks; sin embargo ocurrieron desviaciones significativas para bajos y altos valores de Ks. Las medidas de conductividad hidráulica tomadas en muestras de campo mostraron una disminución con la profundidad y exhibieron una conductividad hidráulica anisotrópica tal como se esperaba de acuerdo a estudios previos.

利用修正的分离容器方法测量泥岩的饱和渗透系数及各向异性

摘要

泥岩的分解固结过程导致其物理及水力学属性的长期变化。泥岩的饱和渗透系数(Ks)与深度有关,且随深度增加可增可减,所以确定大量样品的Ks需要更加精确地评估野外变异性。立方模型是常用的确定K-s的实验室方法,因为该法允许较小的样品尺寸,同时保证边缘效应最小。本文描述了一种可替代的分离容器的设计及使用,将未经扰动的泥岩立方体围绕起来测量Ks,并将该法应用于加拿大西北部的野外试验场中。该法在保证各向异性测量的同时使得Ks测量更加简单可控。利用分离容器及蜡方法对同一样品(K-s在21-314 m/d范围内)进行匹配试验,与中间Ks值一致性较好,但在低Ks及高Ks值时存在显著偏差。野外样品的测量表明渗透系数随深度增加而降低,且表现出各项异性,与之前研究预期相同。

Medição da condutividade hidráulica saturada e da anisotropia de turfa por um método de recipiente de divisão modificado

Resumo

As alterações a longo prazo das propriedades físicas e hidráulicas da turfa resultam dos processos de decomposição e consolidação. A condutividade hidráulica saturada (Ks) da turfa é dependente da profundidade, podendo aumentar ou diminuir em profundidade; por esse motivo é necessário determinar o Ks num grande número de amostras para avaliar a variabilidade de campo de forma mais precisa. O método do cubo é um procedimento de laboratório popular para determinar Ks, pois permite a utilização de menores volumes da amostra, enquanto minimiza os efeitos de borda. Este artigo descreve a conceção e utilização de um recipiente de divisão modificado para envolver cubos de turfa não perturbados durante a medição de Ks e a posterior aplicação deste método num campo experimental em Territórios do Noroeste, Canadá. O método permite medições mais simples e mais controladas de Ks enquanto possibilita também medições de anisotropia. Os ensaios combinados em amostras idênticas (gama de Ks 21–314 m/d), utilizando o método de recipiente de divisão e o método de cera, mostraram uma boa concordância para valores intermédios de Ks, mas desvios significativos nos valores baixos e elevados de Ks. As medições de condutividade hidráulica efetuadas em amostras de campo mostraram uma diminuição com a profundidade e uma anisotropia conforme esperado com base em estudos anteriores.

References

  1. ASTM D4511–00 (2006) Standard test method for hydraulic conductivity of essentially saturated peat. ASTM International, West Conshohocken, PAGoogle Scholar
  2. Baird AJ, Eades PA, Surridge BWJ (2008) The hydraulic structure of a raised bog and its implications for ecohydrological modelling of bog development. Ecohydrology 1:289–298. doi:10.1002/Eco.33 CrossRefGoogle Scholar
  3. Beckwith CW, Baird AJ, Heathwaite AL (2003) Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat, I: laboratory measurements. Hydrol Process 17(1):89–101CrossRefGoogle Scholar
  4. Clothier BE, Smettem KRJ (1990) Combining laboratory and field measurements to define the hydraulic properties of soil. Soil Sci Soc Am J 54(2):299–304CrossRefGoogle Scholar
  5. Kruse J, Lennartz B, Leinweber P (2008) A modified method for measuring saturated hydraulic conductivity and anisotropy of fen peat samples. Wetlands 28(2):527–531CrossRefGoogle Scholar
  6. Oleszczuk R, Brandyk T (2008) The analysis of shrinkage-swelling behavior of peat-moorsh soil aggregates during drying-wetting cycles. Agron Res 6(1):131–140Google Scholar
  7. Quinton WL, Hayashi M, Carey SK (2008) Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrol Process 22(15):2829–2837CrossRefGoogle Scholar
  8. Schlotzhauer SM, Price JS (1999) Soil water flow dynamics in a managed cutover peat field, Quebec: field and laboratory investigations. Water Resour Res 35(12):3675–3683CrossRefGoogle Scholar
  9. Surridge BWJ, Baird AJ, Heathwaite AL (2005) Evaluating the quality of hydraulic conductivity estimates from piezometer slug tests in peat. Hydrol Process 19(6):1227–1244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ranjeet M. Nagare
    • 1
    • 2
  • Robert A. Schincariol
    • 1
  • Aaron A. Mohammed
    • 1
  • William L. Quinton
    • 3
  • Masaki Hayashi
    • 4
  1. 1.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  2. 2.Now at WorleyParsons Canada Services LtdEdmontonCanada
  3. 3.Cold Regions Research CentreWilfrid Laurier UniversityWaterlooCanada
  4. 4.Department of GeosciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations