A method of estimating bulk potential permeability in fractured-rock aquifers using field-derived fracture data and type curves

Une méthode d’estimation de la perméabilité potentielle d’ensemble d’aquifères fracturés utilisant des abaques ainsi que des données sur la fracturation de la roche relevées sur le terrain

Un método para estimar la permeabilidad potencial en acuíferos de rocas fracturas usando datos de fracturas proveniente de campo y curvas tipos

利用现场裂隙数据和标准曲线来评估裂隙含水层整体的潜在渗透性

Um método de estimar a permeabilidade potencial de aquíferos fraturados utilizando dados de fraturas e curvas tipo obtidas em trabalhos de campo

Abstract

A method is devised for estimating the potential permeability of fracture networks from attributes of fractures observed in outcrop. The technique, which is intended as a complement to traditional approaches, is based on type curves that represent various combinations of fracture lengths, fracture orientations and proportions (i.e., intensities) of fractures that participate in flow. Numerical models are used to derive the type curves. To account for variations in fracture aperture, a permeability ratio (R) defined as the permeability of a fracture network in a domain divided by the permeability of a single fracture with identical fracture apertures, is used as a dependent variable to derive the type curves. The technique works by determining the point on the type curve that represents the fracture characteristics collected in the field. To test the performance of the technique, permeabilities that were derived from fractured-rock aquifers of eastern Massachusetts (USA) are compared to permeabilities predicted by the technique. Results indicate that permeabilities estimated from type curves are within an order of magnitude of permeabilities derived from field tests. First-order estimates of fracture-network permeability can, therefore, be easily and quickly acquired with this technique before more robust and expensive methods are utilized in the field.

Résumé

Une méthode a été élaborée pour estimer la perméabilité d’ensemble de réseaux de fractures à partir de caractéristiques de fractures observées sur affleurement. La technique, qui se veut être un complément aux approches traditionnelles, est basée sur des abaques représentant des combinaisons variables de longueurs, orientations et proportions (i.e. densité de fracturation) des fractures qui contribuent à l’écoulement. On a utilisé des modèles numériques dérivés d’abaques. Pour tenir compte des variations d’ouverture de la fracturation, un ratio de perméabilité (R) défini comme la perméabilité d’un domaine de réseau de fractures divisé par la perméabilité d’une fracture unique d’ouverture identique, a été utilisé comme variable dépendante dérivant des abaques. La technique fonctionne en déterminant le point sur l’abaque type qui représente les caractéristiques de la fracturation relevées sur le terrain. Pour tester la performance de la technique, les perméabilités d’aquifères fracturés de l’Est Massachusetts (USA) ont été comparées avec les perméabilités prévues par la technique. Les résultats indiquent que les perméabilités estimées à partir des abaques sont dans l’ordre de grandeur des perméabilités issues de tests de terrain. Des estimations de premier ordre de la perméabilité du réseau de fractures peut, par conséquent, être aisément et rapidement acquises avec cette technique avant que des méthodes plus lourdes et coûteuses soient utilisées sur le terrain.

Resumen

Se diseñó un método para estimar la permeabilidad potencial de redes de fracturas a partir de atributos de las fracturas observadas en afloramientos. La técnica, que se intenta como un complemento a los enfoques tradicionales, está basada en curvas tipo que representan varias combinaciones de longitudes, orientaciones y proporciones (por ejemplo intensidades) de fracturas que participan en el flujo. Se utilizan modelos numéricos para desarrollar las curvas tipo. Para tener en cuenta las variaciones en las aperturas de las fracturas, se utilizó una relación de permeabilidad (R) definida como la permeabilidad de una red de fracturas en un dominio dividido por la permeabilidad de una fractura simple con idénticas aperturas de fracturas, como una variable dependiente para desarrollar las curvas tipo. La técnica trabaja determinando el punto sobre la curva tipo que representa las características de la fractura recogidas en el campo. Para probar la performance de la técnica se comparan las permeabilidades que fueron desarrolladas de los acuíferos de rocas fracturadas del este de Massachusetts (EEUU) a las permeabilidades predichas por la técnica. Los resultados indican que las permeabilidades estimadas a partir de las curvas tipo están dentro del orden de magnitud de permeabilidades deducidas de los ensayos de campo. Las estimaciones de primer orden de la permeabilidad de redes de fractura, pueden, por lo tanto, ser fácil y rápidamente adquiridas con esta técnica antes de utilizar métodos de campo más robustos y costosos

摘要

通过在野外露头观察到的裂隙的特征来评估裂隙网络的潜在渗透性的方法在本文中被提出。这种技术是基于标准曲线的,是对传统方法的一种补充,标准曲线代表了裂隙的长度、裂隙的走向和与地下水流动有关的裂隙的规模(即密度)的不同组合。用数值模型来获得标准曲线。为了解释裂隙开度的变化,定义了渗透性比值(R),渗透性比值是区域上裂隙网的渗透系数与具有相同裂隙开度的单一裂隙渗透系数的比值,渗透性比值也作为获得标准曲线的因变量。这种技术的工作原理是确定标准曲线上能代表在现场获得的裂隙特征的点。为了测试这种技术的效果,把从美国马萨诸塞州东部获得的裂隙含水层的渗透率和通过这种技术预测得到的渗透率进行了对比。结果表明,利用标准曲线评估获得的渗透系数和通过现场测试得到的渗透系数在同一个数量级上。因此,在利用更成熟更昂贵的方法之前,利用这种技术,可以方便快捷地获得裂隙网络渗透系数的一级估计值。

Resumo

É desenvolvido um método para estimar a permeabilidade potencial de redes de fratura através de atributos de fraturas observadas em afloramento. A técnica, que é concebida como um complemento para as abordagens tradicionais, baseia-se em curvas tipo que representam várias combinações de comprimentos de fratura, orientações de fratura e proporções (isto é, intensidades) de fraturas que facilitam o fluxo. São utilizados modelos numéricos para obter as curvas tipo. Para ter em conta as variações de abertura das fraturas, uma relação de permeabilidade (R) definida como a permeabilidade de uma rede de fraturas de um domínio dividida pela permeabilidade de uma fratura simples com idêntica abertura da fratura, é usada como uma variável dependente para obter as curvas tipo. A técnica funciona através da determinação do ponto na curva tipo que representa as caraterísticas das fraturas recolhidas no campo. Para testar o desempenho da técnica, as permeabilidades que foram derivadas a partir de aquíferos rochosos fraturados do leste de Massachusetts (EUA) são comparados com permeabilidades previstas pela técnica. Os resultados indicam que as permeabilidades estimadas a partir das curvas tipo estão dentro da ordem de grandeza da magnitude das permeabilidades obtidas a partir de ensaios de campo. Estimativas de uma primeira ordem de grandeza da permeabilidade da rede de fraturas podem, portanto, ser fácil e rapidamente obtidas com esta técnica, antes de métodos mais robustos e dispendiosos serem utilizados no campo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Baghbanan A, Jing L (2007) Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int J Rock Mech Min Sci 44(5):704–719

    Article  Google Scholar 

  2. Berkowitz B (1995) Analysis of fracture network connectivity using percolation theory. Math Geol 27(4):467–483

    Article  Google Scholar 

  3. Berkowitz B (2002) Characterizing flow and transport in fractured geologic media: a review. Adv Water Resour 25:861–884

    Article  Google Scholar 

  4. Boutt DF, Diggins PJ, Mabee SB (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18(8):1839–1854. doi:10.1007/s10040-010-0640-y

    Article  Google Scholar 

  5. Caine JS, Tomusiak SRA (2003) Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range. Geol Soc Am Bull 115(11):1410–1424

    Article  Google Scholar 

  6. de Dreuzy JR, Davy P, Bour O (2001a) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution, 1: effective connectivity. Water Resour Res 37(8):2065–2078

    Article  Google Scholar 

  7. de Dreuzy JR, Davy P, Bour O (2001b) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution, 2: permeability of networks based on lognormal distribution of apertures. Water Resour Res 37(8):2079–2095

    Article  Google Scholar 

  8. Dershowitz W, Lee G, Geier J, Foxford T, LaPointe P, Thomas A (1996) FracMan™: interactive discrete feature data analysis, geometric modeling, and exploration simulation, user documentation, version 2.5. Golder, Redmond, WA

    Google Scholar 

  9. Diggins JP (2009) Understanding the Depth and Nature of Flow Systems in the Nashoba Terrane, Eastern Massachusetts, U.S.A. MSc Thesis, University of Massachusetts, USA. http://scholarworks.umass.edu/theses/272. Accessed January 2012

  10. Gillespie PA, Walsh JJ, Watterson J, Bonson CG, Manzocchi T (2001) Scaling relationships of joints and vein arrays from The Burren Co. Clare, Ireland. J Struct Geol 23:183–201

    Article  Google Scholar 

  11. Golder Associates (2004) FracWorks XP: discrete feature simulator, User Documentation, Version 4.0. Golder, Redmond, WA

  12. Hancock PL, Engelder T (1989) Neotectonic joints. Geol Soc Am Bull 101:1197–1208

    Article  Google Scholar 

  13. Huseby O, Thovert J-F, Adler PM (1997) Geometry and topology of fracture systems. J Phys A Math Gen 30:1415–1444

    Article  Google Scholar 

  14. Khamforoush M, Shams K, Thovert J-F, Adler PM (2008) Permeability and percolation of anisotropic three-dimensional fracture networks. Phys Rev 77(5):0563071–056307110

    Google Scholar 

  15. Koudina NR, Garcia G, Thovert J-F, Adler PM (1998) Permeability of three-dimensional fracture networks. Phys Rev 57(4):4466–4467

    Google Scholar 

  16. Lattman LH, Parizek RR (1964) Relationship between fracture traces and the occurrence of groundwater in carbonate rocks. J Hydrol 2:73–91

    Article  Google Scholar 

  17. Long JCS, Witherspoon PA (1985) The relationship of the degree of interconnection to permeability in fracture networks. J Geophys Res 90:3087–3098

    Article  Google Scholar 

  18. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658

    Article  Google Scholar 

  19. Mabee SB, Hardcastle KC, Wise DU (1994) A method for collecting and analyzing lineaments for regional-scale fractured bedrock aquifer studies. Ground Water 32(6):884–894

    Article  Google Scholar 

  20. Manda AK (2009) Development and verification of conceptual models to characterize the fractured bedrock aquifer of the Nashoba terrane, Massachusetts. PhD, University of Massachusetts, USA, paper AAI3372266. http://scholarworks.umass.edu/dissertations/AAI3372266. Accessed January 2012

  21. Manda AK, Mabee SB, Wise DU (2008) Influence of rock fabric attribute distribution and implications for groundwater flow in the Nashoba Terrane, eastern Massachusetts. J Struct Geol 30(4):464–477

    Article  Google Scholar 

  22. Marshak S, Mitra G (1988) Basic methods of structural geology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  23. Mazurek M, Jakob A, Bossart P (2003) Solute transport in crystalline rocks at Äspö: geological basis and model calibration. J Contam Hydrol 61:157–174

    Article  Google Scholar 

  24. Min KB, Jing L, Stephansson O (2004) Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeol J 12:497–510

    Article  Google Scholar 

  25. Mourzenko VV, Thovert J-F, Adler PM (2004) Macroscopic permeability of three-dimensional fracture networks with a power-law size distribution. Phys Rev 69(6):0663071–06630713

    Google Scholar 

  26. National Research Council (1996) Rock fracture and fluid flow, contemporary understandings and applications. National Academy Press, Washington, DC

    Google Scholar 

  27. Odling NE (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J Struct Geol 19:1257–1271

    Article  Google Scholar 

  28. Ortega O, Marrett R, Laubach S (2006) A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bull 90(2):193–208. doi:10.1306/08250505059

    Article  Google Scholar 

  29. Renshaw CE (1999) Connectivity of joint networks with power law length distributions. Water Resour Res 35:2661–2670

    Article  Google Scholar 

  30. Robinson PC (1983) Connectivity of fracture systems a percolation theory approach. J Phys A Math Gen 16:605–614

    Article  Google Scholar 

  31. Shapiro A, Hsieh P (1991) Research in fractured-rock hydrogeology: characterizing fluid movement and chemical transport in fractured rock at the mirror lake drainage basin, New Hampshire. In: US Geological Survey Toxic Substances Hydrology Program: Proc. of the technical meeting, Monterey, CA, March 11–15, 1991. US Geol Surv Water Resour Invest Rep 91–4034

  32. Shapiro A, Hsieh P (1994) Hydraulic characteristics of fractured bedrock underlying the FSE well Field at the mirror lake site, Grafton County, New Hampshire. In: US Geological Survey Toxic Substance Hydrology Program: proceedings of the technical meeting, Colorado Springs, CO, September 20–24, 1993. US Geol Surv Water Resour Invest Rep 94–4015

  33. Siddiqui SH, Parizek RR (1971) Hydrologic factors influencing well yields in folded and faulted carbonate rocks in central Pennsylvania. Water Resour Res 7(5):1295–1312

    Article  Google Scholar 

  34. Siddiqui SH, Parizek RR (1974) An application of non parametric statistical tests in hydrogeology. Ground Water 12:1–14

    Google Scholar 

  35. Snow DT (1968) Rock fracture spacings, openings, and porosities. Proc Am Soc Civ Eng J Soil Mech Found Div ASCE 94:73–91

    Google Scholar 

  36. Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5(6):1273–1289

    Article  Google Scholar 

  37. Surrette MJ, Allen DM (2008) Quantifying heterogeneity in variably fractured sedimentary rock using a hydrostructural domain. Geol Soc Am Bull 120:225–237. doi:10.1130/B26078.1

    Article  Google Scholar 

  38. Surrette MJ, Allen DM, Journey M (2008) Regional evaluation of hydrologic properties in variably fractured rock using a hydrostructural domain approach. Hydrogeol J 16:11–30. doi:10.1007/s10040-0070206-9

    Article  Google Scholar 

  39. Wong TF, Fredrich JT, Gwanmesia GD (1989) Crack aperture statistics and pore space fractal geometry of westerly granite and Rutland quartzite: implications for an elastic contact model of rock compressibility. J Geophys Res 94 (B8):10,278. doi:10.1029/JB094iB08p10267

  40. Zen E, Goldsmith RR, Ratcliff NM, Robinson P, Stanley RS (1983) Bedrock geologic map of Massachusetts. U S Geol Surv scale 1:250000

    Google Scholar 

  41. Zhang X, Sanderson DJ (1995) Anisotropic features of geometry and permeability in fractured rock masses. Eng Geol 40:65–75

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by USGS Award Number 03HQGR0125 through the Water Resources Research Institutes Program. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for governmental purposes. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. Software programs used in this study were graciously provided by Richard W. Allmendinger (StereoWin 1.2), Francesco Salvini (Daisy 3) and Golder Associates (FracMan). This paper benefited greatly from suggestions made by an anonymous reviewer and Diana Allen.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alex K. Manda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 767 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manda, A.K., Mabee, S.B., Boutt, D.F. et al. A method of estimating bulk potential permeability in fractured-rock aquifers using field-derived fracture data and type curves. Hydrogeol J 21, 357–369 (2013). https://doi.org/10.1007/s10040-012-0919-2

Download citation

Keywords

  • Modeling
  • Permeability
  • Fractured rocks
  • Type curves
  • USA