Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain

Gaz rares et géochimie isotopique sur des bassins versants de l’Arctique Canadien : traçage de recharge de nappe dans le permafrost

Gases nobles y geoquímica isotópica en cuencas del Ártico Occidental de Canadá: trazadores de recarga de agua subterránea en terrenos permafrost

稀有气体和同位素地球化学应用于加拿大西部寒区流域:示踪多年冻土地带地下水补给

Geoquímica isotópica e de gases nobres em bacias hidrográficas do Ártico Canadiano ocidental: traçagem da recarga de águas subterrâneas em terrenos de permafrost

Abstract

In Canada’s western Arctic, perennial discharge from permafrost watersheds is the surface manifestation of active groundwater flow systems with features including the occurrence of year-round open water and the formation of icings, yet understanding the mechanisms of groundwater recharge and flow in periglacial environments remains enigmatic. Stable isotopes (δ18O, δD, δ13CDIC), and noble gases have proved useful to study groundwater recharge and flow of groundwater which discharges along rivers in Canada’s western Arctic. In these studies of six catchments, groundwater recharge was determined to be a mix of snowmelt and precipitation. All systems investigated show that groundwater has recharged through organic soils with elevated PCO2, which suggests that recharge occurs largely during summer when biological activity is high. Noble gas concentrations show that the recharge temperature was between 0 and 5 °C, which when considered in the context of discharge temperatures, suggests that there is no significant imbalance of energy flux into the subsurface. Groundwater circulation times were found to be up to 31 years for non-thermal waters using the 3 H-3He method.

Résumé

Dans l’Arctique de l’Ouest canadien, une décharge pérenne de bassins versants gelés est la manifestation de surface d’un système actif de flux d’eau souterraine avec des caractéristiques incluant l’entrée d’eau durant toute l’année et la formation de glace, encore que la compréhension des mécanisme de recharge de nappe et du flux dans l’environnement périglaciaire reste énigmatique. Les isotopes stables (δ18O, δD, δ13CDIC) et des gaz rares se sont avérés utiles pour étudier la recharge de nappe et le flux souterrain qui se décharge le long de rivières dans l’arctique de l’Ouest canadien. Dans ces études de six basins versants, on a établi que la recharge de nappe est un mixte de neige fondue et de précipitation. Les investigations sur tous les systèmes montrent que la nappe se recharge à travers des sols organiques à PCO2 élevée, ce qui suggère que la recharge a lieu largement durant l’été quand l’activité biologique est élevée. Les concentrations en gaz rares montrent que la température de recharge était comprise entre 0 et 5 °C, ce qui, considéré dans le contexte des températures de décharge, signifie qu’il n’y a pas de déséquilibre des flux énergétiques en sub-surface. On a trouvé des durées de circulation de l’eau de nappe jusqu’à 31 ans pour des eaux non thermales en utilisant la méthode 3H-3He.

Resumen

En el Ártico Occidental de Canadá, la descarga perenne de cuencas de permafrost es la manifestación superficial de sistemas activos de flujos de agua subterránea con características que incluyen durante el año la presencia de aguas libres y la formación de hielos, sin embargo el entendimiento de los mecanismos de la recarga de agua subterránea y el flujo en ambientes periglaciales siguen siendo enigmáticos. Los isótopos estables (δ18O, δD, δ13CDIC), y los gases nobles han demostrado ser útiles para estudiar la recarga de agua subterránea y el flujo de agua subterránea que descarga a lo largo de ríos en el Ártico occidental de Canadá. En estos estudios de seis cuencas, la recarga del agua subterránea se determinó que era una mezcla del derretimiento de la nieve y de la precipitación. Todos los sistemas investigados muestran que el agua subterránea se recarga a través de suelos orgánicos con elevada PCO2, lo cual sugiere que la recarga ocurre mayormente durante el verano cuando la actividad biológica es alta. Las concentraciones de gases nobles muestra que la temperatura de recarga fue entre 0 y 5 °C, lo cual cuando se considera en el contexto de las temperaturas de descarga, sugiere que no hay un desequilibro significativo en el flujo de energía en el subsuelo. Los tiempos de circulación de agua subterránea resultaron ser de hasta 31 años para agua no termales usando el método 3H-3He.

摘要

在加拿大西部的寒区,来自多年冻土流域的常年地下水排泄是活跃的地下水流系统在地表的表现,在地表可以看到全年开放的水域和冰的形成,然而要弄清楚冰川边缘地带地下水的补给和径流机制仍然存在很多疑惑。稳定同位素(δ18O, δD, δ13CDIC)和稀有气体被证明用来研究地下水补给和径流是很有用的,在加拿大西部寒区地下水就是沿着河流向外排泄。在本次对六个盆地研究中,地下水补给被确定为是融雪和降雨的混合。所有调查过的地下水系统显示地下水在径流过程中经过二氧化碳分压比较高的有机土壤,这表明地下水补给主要发生在生物活动比较活跃的夏季。稀有气体浓度显示地下水补给温度在0~5°C之间,在考虑到地下水排泄温度的情况下,这表明流向地下的能量流并不存在严重的不平衡。利用3H-3He方法研究发现非热水的循环时间长达31年。

Resumo

No Ártico ocidental do Canadá, a descarga perene das bacias hidrográficas com permafrost é a manifestação superficial de sistemas de escoamento de águas subterrâneas ativos com caraterísticas que incluem a ocorrência durante todo o ano de águas abertas e a formação de gelos, apesar da compreensão dos mecanismos de recarga de águas subterrâneas e do fluxo subterrâneo em ambientes periglaciais permanecer enigmática. Os isótopos estáveis (δ18O, δD, δ13CDIC) e os gases nobres têm sido úteis no estudo da recarga e do fluxo de águas subterrâneas que descarregam nos rios do Ártico ocidental do Canadá. Nos estudos de seis bacias hidrográficas, determinou-se que a recarga de águas subterrâneas era uma mistura de águas do degelo e da precipitação. Todos os sistemas investigados mostram que as águas subterrâneas recarregaram através de solos orgânicos com elevado PCO2, o que sugere que a recarga ocorre largamente durante o verão, quando a atividade biológica é alta. As concentrações de gases nobres mostram que a temperatura de recarga foi entre 0 e 5 °C, o que, quando considerado no contexto das temperaturas de descarga, sugere que não há um desequilíbrio significativo de fluxo de energia para a subsuperfície. Utilizando o método 3H-3He, os tempos de circulação de águas subterrâneas foram calculados em até 31 anos para águas não-termais.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aeschbach-Hertig W, Solomon DK (2012) Noble gas thermometry in groundwater hydrology. In: Burnard P (ed) The noble gases as geochemical tracers. Advances in Isotope Geochemistry. Springer, Heidelberg, Germany

  2. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35:2779–2792

    Article  Google Scholar 

  3. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405:1040–1044

    Article  Google Scholar 

  4. Anisimova N, Nikitina N, Piguzova V, Shepelyev V (1973) Water sources in central Yakutia. In: Proc. Second International Conference on Permafrost, Yakutsk, USSR, July 1973

  5. Bennett M, Huddart D, Hambrey M, Chienne J (1998) Modification of braided outwash surfaces by aufeis: an example from Pedersenbreen, Svalbard. Z Geomorphol 42:1–20

    Google Scholar 

  6. Brook G, Ford D (1980) Hydrology of the Nahanni Karst, northern Canada and the importance of extreme summer storms. J Hydrol 46:103–121

    Article  Google Scholar 

  7. Carey KL (1970) Icing occurrence, control and prevention, an annotated bibliography. Cold Region Research and Engineering Laboratory special report, US Army Corps of Engineers, Washington, DC, 151 pp

  8. Carey SK, Woo M (2005) Freezing of subarctic hillslopes, Wolf Creek Basin, Yukon, Canada. Arctic Antarct Alpine Res 37(1):1–10

    Article  Google Scholar 

  9. Cinq-Mars J, Lauriol B (1985) Le karst de Tsi-it-toh-Choh: notes préliminaires sur quelques phénomènes kastiques de Yukon septentrional [The karst Tsi-it-toh-Choh: perliminary notes on some karst phenomena of northern Yukon]. Ann Soc Geol Belg 107:185–195

    Google Scholar 

  10. Clark I, Fritz P (1997) Environmental Isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  11. Clark I, Lauriol B (1997) Aufeis of the Firth River Basin, northern Yukon, Canada: insights into permafrost hydrology and karst. Arct Alp Res 29:240–252

    Article  Google Scholar 

  12. Clark ID, Douglas M, Raven K, Bottomley DJ (2000) Recharge and preservation of glacial meltwater in the Canadian Shield. Ground Water 38:735–742

    Article  Google Scholar 

  13. Clark ID, Lauriol B, Harwood L, Marschner M (2001) Groundwater contributions to discharge in a permafrost setting: Big Fish River, NWT. Arct Antarct Alp Res 33:62–69

    Article  Google Scholar 

  14. Craig P, McCart P (1975) Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska, and the Mackenzie delta, N.W.T., Canada. Arct Alp Res 7:183–198

    Article  Google Scholar 

  15. Duk-Rodkin A (1999) Glacial limits map of Yukon Territory. Open file report 3694. Geological Survey of Canada, Ottawa

  16. Eley F (1974) Mesoscale climatic study of Norman Wells, NWT Canada, Environmental-Social Committee, northern pipeline, Department of Indian and Northern Affairs, Ottawa, pp 56

  17. Environment Canada (2010) National Climate Data and Information Archive. Environment Canada, Ottawa

  18. Ford D, William P (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex, UK

    Google Scholar 

  19. French H (1996) The periglacial environment. Addison Wesley Longman, Vancouver, Canada

    Google Scholar 

  20. Friedrich R (2007) Grundwassercharakterisierung mit Umwelttracern: Erkundung des Grundwassers der Odenwald-Region sowie Implementierung eines neuen Edelgas-Massenspektrometersystems [Groundwater characterization by environmental tracers: exploration of groundwater in the Odenwald region, as well as implementation of a new noble gas mass spectrometer system]. PhD Thesis, University of Heidelberg, Germany

  21. Grasby SE, Allen CC, Longazo TG, Lisle JT, Griffin DW, Beauchamp B (2003) Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic: signs of life beneath the ice. Astrobiology 3:583–596

    Article  Google Scholar 

  22. Hamilton J, Ford D (2002) Karst geomorphology and hydrogeology of the Bear Rock Formation: a remarkable dolostone and gypsum megabreccia in the continuous permafrost zone of Northwest Territories, Canada. Carbonates Evaporites 17:114–115

    Article  Google Scholar 

  23. Hayashi M, Quinton WL, Pietroniro A, Gibson JJ (2004) Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures. J Hydrol 296:81–97

    Article  Google Scholar 

  24. Hu X, Pollard W (1997) The hydrologic analysis and modelling of river icing growth, North Fork Pass, Yukon Territory, Canada. Permafr Periglac Process 8:279–294

    Article  Google Scholar 

  25. Kipfer R, Aeschback-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and groundwaters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Mineralogical Society of America, Washington, DC, 642 pp

    Google Scholar 

  26. Lacelle D, Lauriol B, Clark I (2006) Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: implications in paleoclimatic studies. Chem Geol 234:1–16

    Article  Google Scholar 

  27. Lauriol B, Gray JT (1990) Drainage karstique en milieu de pergélisol: le cas de l’île d’Apakok, T.N.O, Canada [Karst drainage in permafrost: the case of Apakok Island, NWT, Canada]. Permafr Periglac Process 1:129–144

    Article  Google Scholar 

  28. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of Tritium. J Res Nat Inst Stand Technol 105(4):541–549

    Article  Google Scholar 

  29. Manning AH, Solomon DK, Sheldon AL (2003) Applications of a total dissolved gas pressure probe in ground water studies. Ground Water 41:440–448

    Article  Google Scholar 

  30. McFadden T (1990) The Kilpisjärvi Project. J Cold Regions Eng 4(2)

  31. McKay C, Anderson D, Pollard WH, Heldman JL, Doran PT, Fritsen C, Priscu J (2005) Polar lakes, streams and springs as analogs for the hydrological cycle on Mars. In: Water on mars and life [Advances in astrobiology and biogeophysics]. Springer, Berlin, pp 219–233

    Google Scholar 

  32. Michel FA (1977) Hydrogeologic studies of springs in the Central Mackenzie Valley, Northwest Territories, Canada. MSc Thesis, University of Waterloo, Canada

  33. Michel FA (1986) Hydrogeology of the Central Mackenzie Valley. J Hydrol 85:379–405

    Article  Google Scholar 

  34. Mochnacz NJ, Schroeder BS, Sawatzky CD, Reist JD (2010) Assessment of northern Dolly Varden, Salvelinus malma malma (Walbaum, 1792), habitat in Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2926, Fisheries and Oceans Canada, Ottawa, vi + 48 pp

  35. Mohapatra RK, Murty SVS (2000) Search for the mantle nitrogen in the ultramafic xenoliths from San Carlos, Arizona. Chem Geol 164:305–320

    Article  Google Scholar 

  36. Muller S (1947) Permafrost or permanently frozen ground and related engineering problems. Military Intelligence Division, Ann Arbor, MI

    Google Scholar 

  37. Mutch RA, McCart P (1974) Springs within the northern Yukon drainage system (Beaufort Sea Drainage). In: McCart P (ed) Fisheries research associated with proposed gas pipeline routes in Alaska, Yukon and Northwest Territories.. Canadian Arctic Gas Study, pp 34

  38. Omelon C, Pollard W, Andersen D (2006) A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic. Appl Geochem 21:1–15

    Article  Google Scholar 

  39. Peeters F, Beyerle U, Aeschbach-Hertig W, Holocher J, Brennwald MS, Kipfer R (2003) Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim Cosmochim Acta 67:587–600

    Article  Google Scholar 

  40. Pollard WH (2005) Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut, Canada. Permafr Periglac Process 16:51–68

    Article  Google Scholar 

  41. Poole JC, McNeill GW, Langman SR, Dennis F (1997) Analysis of noble gases in water using a quadrapole mass spectrometer in static mode. Appl Geochem 12:707–714

    Article  Google Scholar 

  42. Power G, Brown RS, Imhof JG (1999) Groundwater and fish: insights from northern North America. Hydrol Process 13:401–422

    Article  Google Scholar 

  43. Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Le’vesque LMJ, Vincent WF (2006) Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35(7):347–358

    Article  Google Scholar 

  44. NRCan (Natural Resources Canada) (2003) The atlas of Canada: permafrost. Government of Canada, Ottawa

  45. NRCan (Natural Resources Canada) (2004) The atlas of Canada: geological provinces. Government of Canada, Ottawa

  46. Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling and analysis. Water Resour Res 32:1635–1642

    Article  Google Scholar 

  47. Scholz H, Baumann M (1997) An ‘open system pingo’ near Kangerlussuaq (Søndre Strømfjord), West Greenland. Geol Greenl Surv Bull 176:104–108

    Google Scholar 

  48. Smith S, Burgess M (2002) A digital database of permafrost thickness in Canada. Open file 4173, Geological Survey of Canada, Ottawa

  49. Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Onstott TC, Hobbs MY (2009) Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373:80–95

    Article  Google Scholar 

  50. Taylor A, Nixon M, Eley J, Burgess M, Egginton P (1998) Effects of atmospheric inversions on ground surface temperatures and discontinuous permafrost, Norman Wells, Mackenzie valley, Canada. In: Lewkowicz A, Allard M (eds) Proceedings of the 7th International Conference on Permafrost, Yellowknife, NT, June 1998, pp 1043–1047

  51. Tolstikhin IN, Kamenskiy IL (1969) Determination of ground-water ages by the T-3He Method. Geochem Int 6:810–811

    Google Scholar 

  52. Tolstikhin N, Tolstikhin O (1976) Groundwater and surface water in the permafrost region (translation). Inland Waters Directorate, Government of Canada, Ottawa, 22 pp

  53. Utting N (2012) Geochemistry and noble gases of permafrost groundwater and ground ice in Yukon and the Northwest Territories, Canada. PhD Thesis, University of Ottawa, Canada

  54. Utting N, Clark ID, Lauriol B, Wieser M, Aeschbach-Hertig W (2012) Origin and flow dynamics of perennial groundwater in continuous permafrost terrain using isotopes and noble gases: case study of the Fishing River, Northern Yukon, Canada. Permafr Perigl Process 23(2):91–106. doi:10.1002/ppp.1732

  55. van Everdingen RO (1981) Morphology, hydrology and hydrochemistry of karst in permafrost terrain near Great Bear Lake, Northwest Territories. Government of Canada, Ottawa, 53 pp

  56. Venzke J (1988) Observation on icings phenomena in the Icelandic subarctic-oceanic environment. Geookodynamik 9:207–220

    Google Scholar 

  57. Vogel JC (1993) Variablity of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic, San Diego, CA, pp 29–38

  58. White DE (1957) Thermal waters of volcanic origin. Geol Soc Am Bull 68:1637–1658

    Article  Google Scholar 

  59. Woo M, Marsh P (2005) Snow, frozen soils and permafrost hydrology in Canada, 1999–2002. Hydrol Process 19:215–229

    Article  Google Scholar 

  60. Wrangel F (1841) A journey to the northern shores of Siberia and along the Arctic Ocean made in 1820–1924. Harper, New York

    Google Scholar 

  61. Yoshikawa K, Hinzman L, Kane D (2007) Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J Geophys Res 112:1–14

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Brewster Conant Jr. for help in the field and ideas during this research. Also thanks to Paul Middlestead, Wendy Abdi, Patricia Wickham, Ping Zhang, Ratan Mohapatra and Monika Wilk who assisted with isotopic and geochemical analyses. Thanks to all those who helped with field work including André Pellerin, Billy Nukon, Geoff Cramond, Angelina Buchar, Lisa Tellier and Marielle Fortin-McCuaig. Funding for student travel to N.W.T. and Yukon and was provided by the Northern Scientific Training Program. Funding for helicopter transport was provided by the Yukon Geological Survey, the Polar Continental Shelf Project and Fisheries and Oceans Canada. This work was funded through NSERC Discovery and Northern Supplement grants to I.D. Clark.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas Utting.

Additional information

Published in the theme issue “Hydrogeology of Cold Regions”

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 368 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Utting, N., Lauriol, B., Mochnacz, N. et al. Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain. Hydrogeol J 21, 79–91 (2013). https://doi.org/10.1007/s10040-012-0913-8

Download citation

Keywords

  • Groundwater age
  • Canada
  • Stable isotopes
  • Noble gas
  • Permafrost