Hydrogeology Journal

, Volume 21, Issue 1, pp 185–200 | Cite as

Sensitivity analysis of lake mass balance in discontinuous permafrost: the example of disappearing Twelvemile Lake, Yukon Flats, Alaska (USA)

  • S. M. Jepsen
  • C. I. Voss
  • M. A. Walvoord
  • J. R. Rose
  • B. J. Minsley
  • B. D. Smith
Paper

Abstract

Many lakes in northern high latitudes have undergone substantial changes in surface area over the last four decades, possibly as a result of climate warming. In the discontinuous permafrost of Yukon Flats, interior Alaska (USA), these changes have been non-uniform across adjacent watersheds, suggesting local controls on lake water budgets. Mechanisms that could explain the decreasing mass of one lake in Yukon Flats since the early 1980s, Twelvemile Lake, are identified via a scoping analysis that considers plausible changes in snowmelt mass and infiltration, permafrost distribution, and climate warming. Because predicted changes in evaporation (2  cmyr−1) are inadequate to explain the observed 17.5 cmyr−1 reduction in mass balance, other mechanisms are required. The most important potential mechanisms are found to involve: (1) changes in shallow, lateral groundwater flow to the lake possibly facilitated by vertical freeze-thaw migration of the permafrost table in gravel; (2) increased loss of lake water as downward groundwater flow through an open talik to a permeable subpermafrost flowpath; and (3) reduced snow meltwater inputs due to decreased snowpack mass and increased infiltration of snowmelt into, and subsequent evaporation from, fine-grained sediment mantling the permafrost-free lake basin.

Keywords

Geophysical methods Groundwater recharge/water budget Groundwater/surface-water relations Permafrost Alaska (USA) 

Analyse de sensibilité du bilan d’eau d’un lac dans un permafrost discontinu : l’exemple de la disparition de Twelvemile Lake, Yukon Flats, Alaska (USA)

Résumé

De nombreux lacs de haute latitude Nord ont subi des changements substantiels de surface au cours des quatre dernières décades, peut être comme résultat du réchauffement climatique. Dans le permafrost discontinu de Yukon Flats, Alaska intérieur (USA), ces changements ont été non uniformes de part et d’autre de lignes de partage des eaux, ce qui suggère un contrôle local des budgets eau des lacs. Des mécanismes qui pourraient expliquer la décroissance du volume d’un lac sur Yukon Flats depuis le début des années 1980, Twelvemile Lake, ont été identifiés par une analyse étendue qui considère des changements plausibles de la masse de neige fondue et de l’infiltration, distribution du permafrost et réchauffement climatique. Parce que les changement d’évaporation prévus (2 cm/an,) sont non adéquats pour expliquer la réduction de 17.5 cm/an du bilan massique, d’autres mécanismes sont requis. Les mécanismes potentiels les plus importants trouvés incluent: (1) changements dans le flux de nappe superficiel latéral vers le lac éventuellement facilités par une migration gel-dégel de la surface du permafrost dans le gravier; (2) perte accrue de l’eau de lac par flux descendant à travers un talik ouvert vers un chenal perméable sous le permafrost; et (3) recharge réduite par eau de fusion de neige due à la décroissance de la masse du pack neigeux et infiltrations accrue de neige fondue, et évaporation subséquente depuis le manteau de sédiment à grain fin couvrant le bassin du lac libre de permafrost.

Análisis de sensibilidad del balance de masa de un lago en un permafrost discontinuo: el ejemplo del desaparecido lago Twelvemile, Yukon Flats, Alaska (EEUU)

Resumen

Muchos lagos en las altas latitudes nórdicas han experimentado cambios sustanciales en su extensión superficial durante las últimas cuatro décadas, posiblemente como resultado del calentamiento climático. En el permafrost discontinuo de Yukon Flats, en el interior de Alaska (EEUU), estos cambios no han sido uniformes a través de cuencas adyacentes, lo que sugiere controles locales sobre los balances de agua del lago. Los mecanismos que podrían explicar la disminución de la masa en uno de los lagos en Yukon Flats desde los comienzos de 1980, el Lago Twelvemile, se identifican a través de un análisis de observación que considera cambios plausibles en la masa de nieve derretida e infiltración, en la distribución del permafrost y en el calentamiento climático. Debido a que los cambios predichos en la evaporación (2 cm yr−1) son inadecuados para explicar la reducción de 17.5 cm yr−1 observada en el balance de masa, se requieren otros mecanismos. Se encontró que los mecanismos potenciales de mayor importancia involucraban: (1) cambios en el flujo lateral de agua subterránea somera hacia el lago posiblemente facilitado por una migración vertical del nivel del permafrost en las gravas debido a procesos de congelamiento – descongelamiento; (2) incremento de la pérdida del agua del lago como flujo subterránea descendente a través de un talik abierto hacia una trayectoria de flujo en un subpermafrost permeable; y (3) entradas reducidas de agua del derretimiento de nieve debido a una reducción de la masa de la capa de nieve y un aumento de la infiltración de la nieve derretida y subsecuente evaporación hacia los sedimentos de grano fino que recubren la cuenca del lago libre de permafrost.

不连续永冻区湖水质量平衡敏感性分析:以美国阿拉斯加州育空河平原Twelvemile湖消退为例

摘要

北部高纬度地区的很多湖泊在过去的四十年里经历了可能是由于气候变暖引起的实质性面积变化。在美国阿拉斯加州育空河平原的不连续永冻层,这些变化非均匀地横穿邻近流域,表明对湖水平衡的局部调控。通过考虑貌似可信的融雪水质量、入渗、永冻层分布和气候变暖的变化的域分析,识别能够解释始于80年代早期的育空河平原Twelvemile湖水量减少的机制。因为预测的蒸发量(每年2 cm)变化不足以解释观测到的质量平衡上每年17.5 cm的减少,故存在其他机制。本文发现的潜在重要机制包括:(1)砂砾石中永冻土面的垂向冻融迁移有助于流向湖泊的浅层和侧向地下水径流变化;(2)由于地下水向下流经开放的融区而到达可渗透的永冻层,湖水损失水量增加;(3)由于积雪量减少而入渗的融雪量增加,湖泊融雪量的输入项减少,且随后在细粒的沉积物覆盖的沉积盆地永冻层上发生蒸发。

Análise de sensibilidade do balanço de massa de lagos no permafrost descontínuo: o exemplo do desaparecimento do Lago Twelvemile, Yukon Flats, Alasca (EUA)

Resumo

Muitos lagos situados nas altas latitudes do norte sofreram alterações substanciais na sua área de superfície ao longo das últimas quatro décadas, possivelmente em consequência do aquecimento climático. No permafrost descontínuo de Yukon Flats, no interior do Alasca (EUA), estas alterações têm ocorrido de forma não-uniforme entre bacias hidrográficas adjacentes, sugerindo a existência de fatores locais que controlam os balanços hídricos dos lagos. Identificam-se aqui os mecanismos que poderiam explicar o decréscimo de massa de um lago em Yukon Flats, o Lago Twelvemile, desde o início dos anos 80, através de uma análise abrangente que considera a existência de alterações plausíveis na massa do degelo e na infiltração da água, na distribuição do permafrost e o efeito do aquecimento climático. Uma vez que as mudanças previstas na evaporação (2 cm ano−1) são insuficientes para explicar a redução de 17.5 cm ano−1 observada no balanço de massa do lago, é necessário existirem outros mecanismos. Os mecanismos potenciais mais relevantes parecem envolver: (1) mudanças no escoamento subterrâneo lateral pouco profundo, facilitado possivelmente pela migração vertical da frente de congelamento no permafrost em cascalho, (2) o aumento das perdas de água do lago através da percolação subterrânea ao longo de um talik (local onde o solo não está congelado), até chegar a um caminho de fluxo no subpermafrost permeável, e (3) uma redução das entradas de água do degelo, devido à diminuição da massa acumulada de neve e por causa do aumento da infiltração da água do degelo, e consequente evaporação a partir dos sedimentos finos que existem na parte da bacia do lago livre de permafrost.

References

  1. Abraham J (2011) A promising tool for subsurface permafrost mapping: an application of airborne geophysics from the Yukon River Basin, Alaska. US Geol Surv Fact Sheet 2011–3133, 4 ppGoogle Scholar
  2. Anderson L, Finney BP, Guldager N, Rover JA, Shapley M (2010) Oxygen isotopes and hydroclimatic change in the Yukon Flats National Wildlife Refuge, northeast Alaska. 2010 American Geophysical Union Fall Meeting Abstract GC24b-08, AGU, Washington, DCGoogle Scholar
  3. Ball LB, Smith BD, Minsley BJ, Abraham JD, Voss CI, Astley BN, Deszcz-Pan M, Cannia JC (2011) Airborne electromagnetic and magnetic geophysical survey data of the Yukon Flats and Fort Wainwright areas, central Alaska, June 2010. US Geol Surv Open-File Rep 2011–1304, 28 ppGoogle Scholar
  4. Barber VA, Juday GP, Finney BP, Wilmking M (2004) Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: evidence for changing synoptic climate regimes. Clim Chang 63:91–120CrossRefGoogle Scholar
  5. Brewer MC, Carter LD, Glenn R (1993) Sudden drainage of a thaw lake on the Alaskan Arctic coastal plain. Proceedings of the Sixth International Conference on Permafrost (vol 1), Beijing, China, July 1993, pp 48–53Google Scholar
  6. Brown J, Ferrians OJ, Jr., Heginbottom JA, Melnikov ES (1998, revised February 2001). Circum-arctic map of permafrost and ground ice conditions. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital media. http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html. Accessed 08 Nov 2011
  7. Brown R, Derksen C, Wang L (2010) A multi–data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J Geophys Res 115:D16111. doi:10.1029/2010JD013975 CrossRefGoogle Scholar
  8. Carey SK, Woo MK (1999) Hydrology of two slopes in subarctic Yukon, Canada. Hydrol Process 13:2549–2562CrossRefGoogle Scholar
  9. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769CrossRefGoogle Scholar
  10. Chapin FS, III, Viereck LA, Adams PC, Van Cleve K, Fastie CL, Ott RA, Mann D, Johnstone JF (2006) Successional processes in the Alaskan boreal forest. In: Chapin FS, III, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL (eds) Alaska’s changing boreal forest, Oxford University Press, New York, New York, pp 100–132Google Scholar
  11. Clark A, Barker CE, Weeks EP (2009) Drilling and testing the DOI-04-1A coalbed methane well, Fort Yukon, Alaska. US Geol Surv Open-File Rep 2009–1064, 69 ppGoogle Scholar
  12. Dingman SL (1975) Hydrologic effects of frozen ground: literature review and synthesis, special report 218. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, GermanyGoogle Scholar
  13. Federer CA, Vörösmarty C, Fekete B (1996) Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour Res 32(7):2315–2321CrossRefGoogle Scholar
  14. Ferrians O (1998) Permafrost map of Alaska, USA. National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, Boulder, COGoogle Scholar
  15. Ford J, Bedford BL (1987) The hydrology of Alaskan wetlands, U.S.A.: a review. Arct Alp Res 19(3):209–229CrossRefGoogle Scholar
  16. Foster JL, Robinson DA, Hall DK, Estilow TW (2008) Spring snow melt timing and changes over Arctic lands. Polar Geogr 31(3–4):145–157CrossRefGoogle Scholar
  17. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  18. Gardner WR (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232CrossRefGoogle Scholar
  19. Gesch DB (2007) The national elevation dataset. In: Maune D (ed) Digital elevation model technologies and applications: the DEM Users manual, 2nd edn. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, pp 99–118Google Scholar
  20. Granger RJ, Gray DM, Dyck GE (1984) Snowmelt infiltration to frozen Prairie soils. Can J Earth Sci 21:669–677CrossRefGoogle Scholar
  21. Jepsen SM, Koch JC, Rose JR, Voss CI, Walvoord MA (2012) Thermal and hydrological observations near Twelvemile Lake in discontinuous permafrost, Yukon Flats, interior Alaska, September 2010–August 2011. US Geol Surv Open-File Rep 2012–1121. Available online at http://pubs.usgs.gov/of/2012/1121/. July 2012
  22. Jorgenson MT, Osterkamp TE (2005) Response of boreal ecosystems to varying modes of permafrost degradation. Can J For Res 35(9):2100–2111CrossRefGoogle Scholar
  23. Jorgenson MT, Yoshikawa K, Kanevskiy M, Shur Y, Romanovsky V et al (2008) Permafrost characteristics of Alaska (map, December update), Ninth International Conference on Permafrost (NICOP), Fairbanks, AK, June 29–July 3, 2008. http://permafrost.gi.alaska.edu/content/data-and-maps. Accessed 16 Sep 2011
  24. Kane DL (1980) Snowmelt infiltration into seasonally frozen soils. Cold Reg Sci Technol 3:153–161CrossRefGoogle Scholar
  25. Kane DL, Stein J (1983) Water movement into seasonally frozen soils. Water Resour Res 19(6):1547–1557CrossRefGoogle Scholar
  26. Letts MG, Roulet NT, Comer NT, Skarupa MR, Verseghy DL (2000) Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmos Ocean 38(1):141–160CrossRefGoogle Scholar
  27. Lewkowicz AG, Coultish T (2004) Beaver damming and palsa dynamics in a subarctic mountainous environment, Wolf Creek, Yukon Territory, Canada. Arct Antarct Alp Res 36(2):208–218CrossRefGoogle Scholar
  28. Lyon SW, Destouni G (2009) Changes in catchment-scale recession flow properties in response to permafrost thawing in the Yukon River Basin. Int J Climatol 30(14):2138–2145CrossRefGoogle Scholar
  29. Mackay JR (1992) Lake instability in an ice-rich permafrost environment: examples from the western Arctic coast. In: Robarts RD and Bothwell ML (eds) Aquatic ecosystems in Semi-Arid Regions: implications for resource management, N.H.R.I. Symposium series 7, Environment Canada, Saskatoon, SK, pp 1–26Google Scholar
  30. Marsh P (1988) Soil infiltration and snow-melt run-off in the Mackenzie Delta, N.W.T. Proceedings of the Fifth International Conference on Permafrost (vol 1), Trondheim, Norway, August 1988, pp 618–621Google Scholar
  31. Marsh P, Neumann NN (2001) Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada. Hydrol Process 15:3433–3446CrossRefGoogle Scholar
  32. Michel FA, van Everdingen RO (1994) Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafr Periglac Process 5:191–195CrossRefGoogle Scholar
  33. Minsley BJ, Abraham JD, Smith BD, Cannia JC, Voss CI, Jorgenson MT, Walvoord MA, Wylie BK, Anderson L, Ball LB, Deszcz-Pan M, Wellman TP, Ager TA (2012) Airborne electromagnetic imaging of discontinuous permafrost. Geophys Res Lett 39:L02503. doi:10.1029/2011GL050079 CrossRefGoogle Scholar
  34. Nakanishi AS, Dorava JM (1994) Overview of environmental and hydrogeologic conditions at Fort Yukon, Alaska. US Geol Surv Open-File Rep 94–526, 133 ppGoogle Scholar
  35. NCDC (1999) Monthly surface data. National Climatic Data Center, Asheville, North Carolina (USA). http://www.ncdc.noaa.gov/oa/ncdc.html. Accessed 15 October 2010
  36. NRCS (2011) SNOTEL Data. Natural Resources Conservation Service, National Water and Climate Center, Portland, Oregon (USA). http://www.wcc.nrcs.usda.gov/snow/. Accessed 19 July 2011
  37. Quinton WL, Bemrose RK, Zhang Y, Carey SK (2009) The influence of spatial variability in snowmelt and active layer thaw on hillslope drainage for an alpine tundra hillslope. Hydrol Process 23:2628–2639CrossRefGoogle Scholar
  38. Riordan B, Verbyla D, McGuire D (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res 111:G04002. doi:10.1029/2005JG000150 CrossRefGoogle Scholar
  39. Ripple CD, Rubin J, Van Hylckama TEA (1972) Estimating steady-state evaporation rates from bare soils under conditions of high water table. US Geol Surv Water Suppl Pap 2019-A, 39 ppGoogle Scholar
  40. Rover JA, Wylie BK, Wickland KP, Griffith B, Dahal D, Granneman BJ (2010) Quantifying surface water in the Yukon River basin [poster], presentation at “Understanding the past, informing decisions for the future”, Climate Change Science Conference, Denver, CO, 9–11 March 2010, US Geological Survey, Reston, VA. Available online at: http://lca.usgs.gov/lca/alaskalcwr/images/posters/GCCposter_rev.pdf. April 2012
  41. Rover J, Ji L, Wylie BK, Tieszen LL (2012) Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote Sens Lett 3(7):595–604CrossRefGoogle Scholar
  42. Selker JS, Keller CK, McCord JT (1999) Vadose zone processes. CRC, Boca Raton, FL, 339 ppGoogle Scholar
  43. Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafr Periglac Process 16(1):5–17CrossRefGoogle Scholar
  44. Singh P, Singh VP (2001) Snow and glacier hydrology. Water science and technology library, 37th edn. Kluwer, Dordrecht, The Netherlands, 742 ppGoogle Scholar
  45. Slaughter CW, Kane DL (1979) Hydrologic role of shallow organic soils in cold climates. In: Cold climate hydrology: proceedings of the Canadian Hydrology Symposium, vol 79. National Research Council of Canada, Ottawa, ON, pp 380–389Google Scholar
  46. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429CrossRefGoogle Scholar
  47. Sturm M, Taras B, Liston GE, Derksen C, Jonas T, Lea J (2010) Estimating snow water equivalent using snow depth data and climate classes. J Hydrometeorol 11. doi:10.1175/2010JHM1202.1,1380–1394
  48. Sturm M, Hiemstra C, Gelvin A, Saari S (2011) Preliminary report on the snow cover of the Yukon Flats, March 2011. US Army Cold Regions Research and Engineering Laboratory-Alaska (CRREL), special report to the US Fish and Wildlife Service, Yukon Flats National Wildlife Refuge, Yukon Flats, ALGoogle Scholar
  49. Suzuki K, Kubota J, Ohata T, Vuglinsky V (2006) Influence of snow ablation and frozen ground on spring runoff generation in the Mogot Experimental Watershed, southern mountainous taiga of eastern Siberia. Nord Hydrol 37(1):21–29Google Scholar
  50. Thornthwaite CW (1948) An approach toward a rationale classification of climate. Geogr Rev 38(1):55–94CrossRefGoogle Scholar
  51. USGS (1974) Aerial single frame photos. US Geological Survey Earth Resources Observation and Science Center (EROS), Sioux Falls, SD. http://earthexplorer.usgs.gov/. Accessed 09 April 2012
  52. USGS (1995) Declassified satellite imagery: 1. U.S. Geological Survey Earth Resources Observation and Science Center (EROS), Sioux Falls, SD (USA). http://earthexplorer.usgs.gov/. Accessed 25 April 2012
  53. USGS (2005) Declassified satellite imagery: 2. U.S. Geological Survey Earth Resources Observation and Science Center (EROS), Sioux Falls, SD. http://earthexplorer.usgs.gov/. Accessed 25 April 2012
  54. USGS (2010) Landsat satellite image archive. US Geological Survey Earth Resources Observation and Science Center (EROS), Sioux Falls, SD. http://earthexplorer.usgs.gov/. Accessed 21 March 2012
  55. van Everdingen RO (1990) Ground-water hydrology. In: Prowse TD and Ommanney CSL (eds) Northern hydrology: Canadian perspectives. Report No. 1, National Hydrology Research Institute, Saskatoon, SK, pp 77–101Google Scholar
  56. van Everdingen R (ed) (1998) (revised May 2005) Multi-language glossary of permafrost and related ground-ice terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. http://nsidc.org/fgdc/glossary/. April 2012
  57. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34:L12402. doi:10.1029/2007GL030216 CrossRefGoogle Scholar
  58. Wendler G, Shulski M (2009) A century of climate change for Fairbanks, Alaska. Arctic 62(3):295–300Google Scholar
  59. Williams JR (1962) Geologic reconnaissance of the Yukon Flats district, Alaska. Geological Survey Bulletin 1111-H. US Government Printing Office, Washington, DCGoogle Scholar
  60. Woo MK (1980) Hydrology of a small lake in the Canadian high Arctic. Arct Alp Res 12(2):227–235CrossRefGoogle Scholar
  61. Woo MK, Mielko C (2007) An integrated framework of lake-stream connectivity for a semi-arid, subarctic environment. Hydrol Process 21:2668–2674CrossRefGoogle Scholar
  62. Woo MK, Steer P (1983) Slope hydrology as influenced by thawing of the active layer, Resolute, N.W.T. Can J Earth Sci 20:978–986CrossRefGoogle Scholar
  63. Woo MK, Marsh P, Steer P (1983) Basin water balance in a continuous permafrost environment. Proceedings of the Fourth International Conference on Permafrost, Fairbanks, AL, July 1983, pp 1407–1411Google Scholar
  64. Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr Periglac Process 14:151–160CrossRefGoogle Scholar
  65. Yuan W, Liu S, Liu H, Randerson JT, Yu G, Tieszen LL (2010) Impacts of precipitation seasonality and ecosystem types on evapotranspiration in the Yukon River Basin, Alaska. Water Resour Res 46:W02514. doi:10.1029/2009WR008119 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • S. M. Jepsen
    • 1
  • C. I. Voss
    • 2
  • M. A. Walvoord
    • 1
  • J. R. Rose
    • 3
  • B. J. Minsley
    • 4
  • B. D. Smith
    • 4
  1. 1.US Geological SurveyDenver Federal CenterDenverUSA
  2. 2.US Geological SurveyMenlo ParkUSA
  3. 3.Yukon Flats National Wildlife RefugeUS Fish and Wildlife ServiceFairbanksUSA
  4. 4.US Geological SurveyDenver Federal CenterDenverUSA

Personalised recommendations