Hydrogeology Journal

, Volume 20, Issue 7, pp 1269–1294 | Cite as

Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: evidence from radiocarbon, chlorine-36 and helium-4

  • L. N. Plummer
  • J. R. Eggleston
  • D. C. Andreasen
  • J. P. Raffensperger
  • A. G. Hunt
  • G. C. Casile
Paper

Abstract

Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last glacial maximum (LGM) water was located about 20 km downgradient on the northern flow path, where the radiocarbon age was 21.5 ka, paleorecharge temperatures were 0.5–1.5  °C (a maximum cooling of about 12 °C relative to the modern mean annual temperature of 13 °C), and Cl, Cl/Br, and stable isotopes of water were minimum. Low recharge temperatures (typically 5–7 °C) indicate that recharge occurred predominantly during glacial periods when coastal heads were lowest due to low sea-level stand. Flow velocities averaged about 1.0 m a–1 in upgradient parts of the upper Patapsco aquifer and decreased from 0.13 to 0.04 m a–1 at 40 and 80 km further downgradient, respectively. This study demonstrates that most water in the upper Patapsco aquifer is non-renewable on human timescales under natural gradients, thus highlighting the importance of effective water-supply management to prolong the resource.

Keywords

Coastal aquifers Groundwater age Radioactive isotopes Atlantic Coastal Plain USA 

Eaux souterraines anciennes dans certaines parties de l’aquifère supérieur de Patapsco, Plaine Atlantique côtière, Maryland, Etats-Unis d’Amérique, à partir des données isotopiques du Carbone 14, Chlore 36 et Hélium 4

Résumé

Les âges apparents des eaux souterraines le long de deux lignes d’écoulement dans l’aquifère supérieur de Patapsco de la plaine atlantique côtière du Maryland (Etats-Unis d’Amérique) ont été estimés à partir des données du 14C, 36Cl et de l’ 4He. La plupart des âges sont compris entre un âge récent contemporain et environ 500 mille ans, avec un échantillon situé à 117 km à l’aval de la zone de recharge daté à partir de l’accumulation radiogénique de l’4He de plus d’un million d’années. L’eau du dernier maximum glaciaire (DMG) est localisée à environ 20 km à l’aval de l’écoulement septentrional ; l’âge (déterminé à l’aide du) carbone radioactif est de 21.5 mille ans, les températures de paléorecharge étant comprises entre 0.5 et 1.5 °C (un refroidissement maximum d’environ 12 °C par rapport à la température moyenne annuelle actuelle de 13 °C) , et les concentrations en Cl, Cl/Br et des isotopes stables de l’eau à leur minimum. Les faibles températures de recharge (typiquement entre 5 et 7 °C) indiquent que la recharge a pris place de manière prédominante pendant les périodes glaciaires lorsque les charges hydrauliques côtières étaient les plus basses à cause d’un niveau marin bas. Les vitesses d’écoulement étaient en moyenne d’environ 1 m/an dans les secteurs amont de l’aquifère supérieur du Patapsco et diminuaient de 0.13 jusqu’à 0.04 m a–1 à 40 et 80 km dans les parties situées à l’aval hydraulique, respectivement. Cette étude montre que la plupart des eaux souterraines de l’aquifère supérieur du Patapsco n’est pas renouvelable à l’échelle des temps humains pour des gradients hydrauliques naturels et met ainsi en évidence l’importance d’une gestion efficace de l’aquifère pour l’alimentation en eau potable pour assurer la pérennité de la ressource.

Agua subterránea antigua en partes del acuífero del Patapsco superior, planicie costera Atlántica, Maryland, EEUU: evidencias a partir de radiocarbono, cloro-36 y helio-4

Resumen

Se estimaron las edades aparentes de agua subterránea a lo largo de dos trayectorias de flujo en el acuífero del Patapsco superior de la planicie costera Atlántica de Maryland, EEUU, usando datos de 14C, 36Cl y 4He. La mayor parte de la oscilación de edades a partir del moderno a unos 500 ka, con una muestra a los 117 km gradiente abajo del área de recarga datada por la acumulación de 4He radiogénico en más de 1 Ma. El agua del último máximo glacial (LGM) fue localizada 20 km gradiente abajo en la trayectoria norte de flujo, donde la edad de radiocarbono fue 21.5 ka, las temperaturas de paleorecarga fueron 0.5–1.5 °C (un enfriamiento máximo de cerca de 12 °C con relación a la temperatura media anual moderna de 13 °C), y Cl, Cl/Br, y los isótopos estables de agua fueron mínimos. Las bajas temperaturas de recarga (típicamente 5–7 °C) indican que la recarga ocurrió predominantemente durante los períodos glaciales cuando los promontorios costeros eran más bajos debido a un nivel bajo del mar. Las velocidades de flujo promediaron alrededor de 1.0 m a–1 en las partes gradiente arriba del acuífero Patapsco superior y decrecieron de 0.13 a 0.04 m a–1 a 40 y 80 km gradiente abajo respectivamente. Este estudio demuestra que la mayor parte del agua en el acuífero del Patapsco superior es no renovable en escalas de tiempo humano bajo gradientes naturales, resaltando así la importancia del manejo efectivo del abastecimiento de agua para prolongar el recurso.

美国马里兰州大西洋滨海平原中赋存在Patapsco上段含水层中的古老地下水:来自于放射性碳,36Cl和4He的证据

摘要

利用14C,36Cl和4He数据估算得到美国马里兰州大西洋滨海平原的Patapsco上段含水层中沿着两条路径运动的地下水的表观年龄。大部分样品的年龄范围为从现代到大约50万年,另外有一个取自由补给区沿水力梯度向下游117km处的样品,用放射性4He的积累的定年方法确定它的年龄为大于100万年。末次盛冰期的地下水位于北部流径沿水力梯度向下游约20km处,它的放射性碳年龄为21500年,古补给温度为0.5 ∼ 1.5 °C(相对于现代年平均温度13 °C最多降低了12 °C),地下水的Cl、Cl/Br和稳定同位素为最低值。低补给温度(通常为5 ∼ 7 °C)表明补给主要发生在冰期,此时由于海平面很低导致沿海的地下水水头达到最低。在Patasco上段含水层的上游地区,地下水流速大约为1m/a,分别由沿着水力梯度向下游40km处的0.13 m a–1降低为80km处的0.04 m a–1。这项研究证明,在人类的时间尺度下,Patapsco上段含水层中的大部分地下水在自然梯度下是不可更新的,这强调了有效的供水管理在延长资源的使用时间方面的重要性。

Água subterrânea antiga em zonas do aquífero superior de Patapsco, Planície Costeira Atlântica, Maryland, EUA: evidências a partir de radiocarbono, cloro-36 e hélio-4

Resumo

As idades aparentes da água subterrânea ao longo de duas linhas de fluxo do aquífero superior de Patapsco, na Planície Costeira Atlântica de Maryland, EUA, foram estimadas, usando dados de 14C, 36Cl e 4He. A maioria das idades varia de moderno a 500 ka, com uma amostra a 117 km a jusante da área de recarga datada através da acumulação de 4He radiogénico, com mais de um Ma. No Último Máximo Glaciar (LGM), a água localizava-se a cerca de 20 km a jusante na linha de fluxo mais a norte, onde a idade de radiocarbono é de 21.5 ka, com temperaturas de paleorrecarga de 0.5–1.5 °C (um arrefecimento máximo de cerca de 12 °C em relação à temperatura média anual moderna de 13 °C), e o Cl, Cl/Br e os isótopos estáveis da água são mínimos. As baixas temperaturas de recarga (tipicamente de 5–7 °C) indicam que a recarga ocorreu predominantemente durante períodos glaciares, quando os potenciais hidráulicos costeiros eram os mais baixos, devido ao posicionamento baixo do nível médio do mar. As velocidades médias de fluxo são cerca de 1.0 m a–1 nas zonas mais a montante do aquífero superior de Patapsco e diminuem de 0.13 m a–1 para 0.04 m a–1 a 40 e 80 km mais a jusante, respetivamente. Este estudo demonstra que, em condições de gradiente natural, a maioria da água no aquífero superior de Patapsco é não renovável à escala de tempo humana, o que realça a importância de uma gestão eficiente do abastecimento de água, de modo a promover a continuidade deste recurso.

Supplementary material

10040_2012_871_MOESM1_ESM.pdf (78 kb)
ESM 1(PDF 78 kb)

References

  1. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35:2779–2792CrossRefGoogle Scholar
  2. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Paleotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405:1040–1044CrossRefGoogle Scholar
  3. Aeschbach-Hertig W, Stute M, Clark JF, Reuter RF, Schlosser P (2002) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia Aquifer (Maryland, USA). Geochim Cosmochim Acta 66(5):797–817CrossRefGoogle Scholar
  4. Andreasen DC ( 2007) Optimization of ground-water withdrawals in Anne Arundel County, Maryland, from the Upper Patapsco, Lower Patapsco, and Patuxent aquifers projected through 2044. Maryland Geol Surv Rep Invest 77, MGS, Baltimore, MDGoogle Scholar
  5. Andreasen DC, Achmad G, Staley AW, Hodo RM (2007) Hydrogeologic framework of the Maryland Coastal Plain. Maryland Geol Surv Prog Rep, MGS, Baltimore, MDGoogle Scholar
  6. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41:233–252CrossRefGoogle Scholar
  7. Balderer W, Synal H-A (1996) Application of the chlorine-36 method for the characterization of the groundwater circulation in tectonically active areas: examples from northwestern Anatolia/Turkey. Terra Nova 8(4):324–333. doi:10.1111/j.1365-3121.1996.tb00565.x CrossRefGoogle Scholar
  8. Bayer R, Schlosser P, Banisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometic system for routine measurement of helium isotopes and tritium by 3He ingrowth method. In: Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse, Springer, Heidelberg, pp 241–279Google Scholar
  9. Bentley HW, Phillips FM, Davis SN (1986) Chlorine-36 in the terrestrial environment. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotope geochemistry, vol 2. Elsevier, AmsterdamGoogle Scholar
  10. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graph T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050CrossRefGoogle Scholar
  11. Bintanja R, van de Wal RS, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:126–128CrossRefGoogle Scholar
  12. Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: example—the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2284CrossRefGoogle Scholar
  13. Collon P, Kutschera W, Loosli HH, Lehmann B, Purtschert R, Love A, Sampson L, Anthony D, Davids B, Cole D, Morrissey D, Pardo R, Paul M, Sherrill B, Steiner M (2000) 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth Planet Sci Lett 182:103–113CrossRefGoogle Scholar
  14. Colman SM, Halka JP, Hobbs CH III, Mixon RB, Foster DS (1990) Ancient channels of the Susquehanna River beneath Chesapeake Bay and the Delmarva Peninsula. Geol Soc Am Bull 102:1268–1279CrossRefGoogle Scholar
  15. Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl Chem 66:273–276CrossRefGoogle Scholar
  16. Coplen TB, Kendall C (2000) Stable hydrogen and oxygen isotope ratios for selected sites of the US Geological Survey’s NASQAN and Benchmark surface-water networks. US Geol Surv Open-File Rep 00-160, 97 ppGoogle Scholar
  17. Crowley TJ, North GR (1991) Paleoclimatology. Oxford Univ Press, New YorkGoogle Scholar
  18. Davis SN, DeWayne C, Zreda M, Sharma P (1998) Chlorine-36 and the initial value problem. Hydrogeol J 6:104–114CrossRefGoogle Scholar
  19. Davis SN, Fabryka-Martin J, Wolfsberg L, Moysey S (2000) Chlorine-36 in ground water containing low chloride concentrations. Ground Water 38:912–922CrossRefGoogle Scholar
  20. Davis SN, Moysey S, Cecil LD, Zreda M (2003) Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol J 11:217–227CrossRefGoogle Scholar
  21. Davis SN, Fabryka-Martin JT, Wolfsberg LE (2004) Variations in bromide in potable ground water in the United States. Ground Water 42:902–909CrossRefGoogle Scholar
  22. Drummond DD (2007) Water-supply potential of the Coastal Plain aquifers of Calvert, Charles, and St. Mary’s Counties, Maryland, with emphasis on the upper Patapsco and lower Patapsco aquifers. Rep Invest 76, Depart Nat Resour, Resour Assess Serv, Maryland Geological Survey, Baltimore, MD, 225 ppGoogle Scholar
  23. Duigon MT, Bolton DW (2003) Formation geochemistry at two boreholes and its bearing on radium content of ground water, Anne Arundel County, Maryland. Maryland Geol Surv Open-File Rep 2003-02-15, MGS, Baltimore, MDGoogle Scholar
  24. Elmore D, Phillips FM (1987) Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science 236:543–550CrossRefGoogle Scholar
  25. Fleck WB, Andreasen DC (1996) Geohydrologic framework, ground-water quality and flow, and brackish-water intrusion in east-central Anne Arundel County, Maryland, with a section on Simulation of brackish-water intrusion in the Aquia aquifer in the Annapolis area using a solute-transport model, by Barry S. Smith. Maryland Geol Surv Rep Invest 62, MGS, Baltimore, MD, 136 ppGoogle Scholar
  26. Fontes JCh, Garnier JM (1979) Determination of the initial activity of the total dissolved carbon: a review of existing models and a new approach. Water Resour Res 12:399–413CrossRefGoogle Scholar
  27. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nature Geosci 3:378–379CrossRefGoogle Scholar
  28. Hansen HJ (1969) Depositional environments of the subsurface Potomac Group in southern Maryland. Am Assoc Pet Geol Bull 53(9):1923–1937Google Scholar
  29. Hansen HJ (1977) Geologic and hydrologic data from two core holes drilled through the Aquia formation (eocene-paleocene), in Prince George’s and Queen Anne’s counties, Maryland. Maryland Geol Surv Open File Rep 77-02-1, MGS, Baltimore, MDGoogle Scholar
  30. Hansen HJ, Wilson JM (1984) Summary of hydrogeologic data from a deep (2,678 ft.) well at Lexington Park, St. Mary’s county, Maryland. Maryland Geol Surv Open File Rep 84-02-1, MGS, Baltimore, MDGoogle Scholar
  31. Katz BG, Eberts SM, Kauffman LJ (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 398:151–166CrossRefGoogle Scholar
  32. Kendall C, Coplen TB (2001) Distribution of Oxygen-18 and Deuterium in river waters across the United States. Hydrol Process 15:1363–1393. doi:10.1002/hyp.217 CrossRefGoogle Scholar
  33. Koterba MT, Wilde FD, Lapham WW (1995) Ground-water data-collection protocols and procedures for the National Water-Quality Assessment Program: collection and documentation of water-quality samples and related data. US Geol Surv Open-File Rep 95-399, 113 ppGoogle Scholar
  34. Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Gröning M (2003) A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211:237–250CrossRefGoogle Scholar
  35. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071 CrossRefGoogle Scholar
  36. Lüthi D, Le Floch M, Bernhard B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379–382. doi:10.1038/nature06949 CrossRefGoogle Scholar
  37. Masterson JP, Pope JP, Monti Jack Jr, Nardi MR (2011) Assessing groundwater availability in the Northern Atlantic Coastal Plain aquifer system. US Geol Surv Fact Sheet 2011–3019, 4 pp. Also available at http://pubs.usgs.gov/fs/2011/3019. Accessed 17 April, 2012
  38. McFarland ER, Bruce TS (2006) The Virginia coastal plain hydrogeologic framework. US Geol Surv Prof Pap 1731, 119 pp. Available online at http://pubs.water.usgs.gov/pp1731/. Accessed 17 April, 2012
  39. Merlivat L, Jouzel J (1983) Deuterium and 18O in precipitation: a global model from oceans to ice caps. In: Palaeoclimates and paleowaters: a collection of environmental studies. STI/PUB/621, IAEA, Vienna, pp 65–66Google Scholar
  40. Moysey S, Davis SN, Zrenda M (1999) A preliminary report on the distribution and variability of chlorine-36 in groundwater across the United States. Am Geophys Union Trans 80(17):S139, Abstract. Spring MeetingGoogle Scholar
  41. Moysey S, Davis SN, Zreda M, Cecil LD (2003) The distribution of meteoric 36Cl/Cl in the United States: a comparison of models. Hydrogeol J 11:615–627CrossRefGoogle Scholar
  42. Ozima M, Podosek FA (1983) Noble Gas Geochemistry. Cambridge University Press, Cambridge, 367 ppGoogle Scholar
  43. Phillips FM (2000) Chlorine-36. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, BostonGoogle Scholar
  44. Phillips FM, Bentley HW, Davis SN, Elmore D, Swanick GB (1986) Chlorine-36 dating of very old groundwater. 2. Milk River aquifer, Alberta, Canada. Water Resour Res 22:2003–2016CrossRefGoogle Scholar
  45. Plummer LN (1993) Stable isotope enrichment in paleowaters of the southeast Atlantic Coastal Plain, United States. Science 262:2016–2020CrossRefGoogle Scholar
  46. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH: Version 2.0. US Geol Surv Water Resour Invest Rep 94-4169, 130 ppGoogle Scholar
  47. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water-Res Invest Rep 03-4131, 395 pp. http://pubs.usgs.gov/wri/wri034131/. Accessed 17 April 2012
  48. Powars DS, Bruce TS (1999) The effects of the Chesapeake Bay impact crater on the geological framework and correlation of hydrogeologic units of the lower York-James Peninsula, Virginia. US Geol Surv Prof Pap 1612:82Google Scholar
  49. Purdy CB, Mignerey AC, Helz GR, Drummond DD, Kubic PW, Elmore D, Hemmick T (1987) 36Cl: a tracer in groundwater in the Aquia Formation of southern Maryland. Nucl Instrum Meth Phys Res B29:372–375Google Scholar
  50. Purdy CB, Burr GS, Rubin M, Helz GR, Mignerey AC (1992) Dissolved organic and inorganic 14C concentrations and ages for Coastal Plain aquifers in southern Maryland. Radiocarb 34(3):654–663Google Scholar
  51. Purdy CB, Helz GR, Mignerey AC (1996) Aquia aquifer dissolved Cl- and 36Cl/Cl: Implications for flow velocities. Water Resour Res 32(5):1163–1171CrossRefGoogle Scholar
  52. Richards HG (1948) Studies of the subsurface geology and paleontology of the Atlantic Coastal Plain. Acad Nat Sci Proceed C 39–76Google Scholar
  53. Sanford WE, Voytek MA, Powars DS, Jones BF, Cozzarelli IM, Cockell CS, Eganhouse RP (2009) Pore-water chemistry from the ICDP-USGS core hole in the Chesapeake Bay impact structure: implications for paleohydrology, microbial habitat, and water resources. In: Gohn GS, Koeberl C, Miller KG, and Reimold WU (eds) The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results from the Eyreville Core Holes. Geol Soc Am Spec Pap 458:867–890Google Scholar
  54. Shedlock RJ, Bolton DW, Cleaves ET, Gerhart JM, Nardi MR (2007) A science plan for a comprehensive regional assessment of the Atlantic Coastal Plain aquifer system in Maryland. US Geol Sur Open-File Rep 2007–1205, 25 ppGoogle Scholar
  55. Soeder DK, Raffensperger JP, Nardi MR (2007) Effects of withdrawals on ground-water levels in southern Maryland and the adjacent Eastern Shore, 1980–2005. US Geol Surv Sci Invest Rep 2007–5249:82Google Scholar
  56. Solomon DK, Hunt A, Poreda RJ (1996) Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resour Res 32:1805–1813CrossRefGoogle Scholar
  57. Sturchio NC, Du X, Purtschert R, Lehmann BE, Sultan M, Patterson LJ, Lu ZT, Müller P, Bigler T, Bailey K, OÇonnor TP, Young L, Lorenzo R, Becker R, Alfy ZE, Kaliouby BE, Dawood Y, Abdallah AMA (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503. doi:10.1029/2003GL019234 CrossRefGoogle Scholar
  58. Stute M, Schlosser P (2000) Atmospheric noble gases. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 349–377Google Scholar
  59. Stute M, Sonntag C, Deak J, Schlosser P (1992) Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim Cosmochim Acta 56:2051–2067CrossRefGoogle Scholar
  60. Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211–1218CrossRefGoogle Scholar
  61. US Geological Survey (2011a) Instructions for collecting stable isotope samples. US Geological Survey, Reston, VA. Available at http://isotopes.usgs.gov/lab/instructions.html. Accessed 17 April 2012
  62. US Geological Survey (2011b) US Geological Survey, Reston Chlorofluorocarbon Laboratory. US Geological Survey, Reston, VA. Available at http://water.usgs.gov/lab/. Accessed 17 April 2012
  63. US Geological Survey (2011c) US Geological Survey, Reston Chlorofluorocarbon Laboratory. US Geological Survey, Reston, VA. Available at http://water.usgs.gov/lab/dissolved-gas/lab/analytical_procedures/. Accessed on 17 April 2012
  64. US Geological Survey (variously dated) National field manual for the collection of water-quality data. US Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1–A9. Available at http://water.usgs.gov/owq/FieldManual/. Accessed 17 April 2012
  65. Van der Straaten, CM, Mook, WG (1983) Stable isotopic composition of precipitation and climatic variability. In Palaeoclimates and Paleowaters: a collection of Environmental Studies. STI/PUB/621, IAEA, Vienna, 1983, pp 53-64Google Scholar
  66. Woods Hole Oceanographic Institution (2011) NOSAMS, National Ocean Sciences Accelerator Mass Spectrometry Facility. The Sample Preparation Laboratory. Available at http://www.whoi.edu/page/live.do?pid=43315. Accessed on 17 April 2012

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • L. N. Plummer
    • 1
  • J. R. Eggleston
    • 2
  • D. C. Andreasen
    • 3
  • J. P. Raffensperger
    • 4
  • A. G. Hunt
    • 5
  • G. C. Casile
    • 1
  1. 1.US Geological SurveyRestonUSA
  2. 2.US Geological SurveyBrooklineUSA
  3. 3.Maryland Geological SurveyBaltimoreUSA
  4. 4.US Geological SurveyBaltimoreUSA
  5. 5.US Geological Survey, Denver Federal CenterDenverUSA

Personalised recommendations