Skip to main content

Advertisement

Log in

Factors determining the economic value of groundwater

Facteurs déterminant la valeur économique de l’eau souterraine

Los factores que determinan el valor económico del agua subterránea

影响地下水经济价值的因素

Fatores que determinam o valor económico da água subterrânea

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Increasing groundwater extraction threatens aquifer sustainability for future generations. Making the best use of limited groundwater resources requires knowledge of its alternative extractive and non-extractive values, as well as the cost of extraction and the hydrological interlinkages between alternative uses. Groundwater value is driven by a number of factors including its supply and demand and institutional and policy factors. These factors and how they affect value of groundwater are described. Also described are the various components relevant to the economic valuation of groundwater and there is discussion on the potential difficulties in their practical estimation. It is argued that groundwater management is essential when there are large potential spatial and temporal externalities related to groundwater pumping. Maintaining non-extractive and option values is likely to require trade-offs with current extractive uses. Well-informed management will be required to allocate groundwater efficiently between different users such as agriculture, industry and the environment, while also balancing the needs of current and future generations.

Résumé

Un prélèvement croissant d’eau souterraine menace la pérennité de l’aquifère pour les générations futures. Faire le meilleur usage de ressources souterraines limitées nécessite une connaissance de la valeur des alternatives exploitation ou non exploitation, de même que le coût de l’exploitation et les interférences entre les utilisations alternatives. La valeur de l’eau souterraine est conditionnée par un certain nombre de facteurs incluant l’offre et la demande et les facteurs institutionnels et politiques. Ces facteurs et la façon dont ils affectent la valeur de l’eau souterraine sont décrits. Sont de même décrites les diverses composantes relatives à l’évaluation économique de l’eau souterraine avec discussion sur les difficultés potentielles de leur estimation pratique. On argumente que la gestion de l’eau souterraine est essentielle quand le pompage a des incidences spatiales et temporelles externes importantes. Une gestion bien documentée sera nécessaire pour répartir l’eau efficacement entre les différents utilisateurs tels l’agriculture, l’industrie, l’environnement, et aussi pour satisfaire les besoins des générations actuelles et futures.

Resumen

El incremento de la extracción de agua subterránea amenaza la sustentabilidad de un acuífero para generaciones futuras. Hacer el mejor uso de los limitados recursos de agua subterránea requiere un conocimiento de sus valores alternativos extractivos y no extractivos, así como el costo de extracción y las interrelaciones hidrológicas entre los usos alternativos. El valor del agua subterránea está impulsado por una serie de factores que incluyen el suministro y la demanda y factores políticos e institucionales. Se describen estos factores y como afectan los valores del agua subterránea. También se describen los varios componentes relevantes para la valuación económica del agua subterránea y una discusión sobre las dificultades potenciales en su estimación prácticas. Se argumenta que el manejo del agua subterránea es esencial cuando existe un gran potencial de externalidades espaciales y temporales relacionadas al bombeo de agua subterránea. El mantenimiento no extractiva y los valores de opción es probable que requieran ventajas y desventajas con los usos extractivos actuales. Un manejo bien informado será requerido para localizar agua subterránea eficientemente entre los diferentes usos tales como agricultura, industria y el ambiente, mientras también un balance de las necesidades de las generaciones actuales y futuras.

摘要

增大地下水的开采量威胁着子孙后代对含水层的可持续利用。为了充分利用有限的地下水资源,需要了解有关其抽取价值和非抽取价值的知识,此外,抽取的成本和两种用途间的水文联系也是需要了解的。地下水的价值由包括供需情况、制度政策等的多个因素决定。文中阐述了这些因素以及这些因素是如何影响地下水的价值的。与地下水的经济评价相关的各种要素也在文中有所涉及,另外,还讨论了在实际评价工作中的潜在的困难。本文认为,当存在与地下水开采相关的大量潜在时空外部因素时,地下水管理是必要的。维持非抽取价值和选择价值可能需要与当前的抽取价值权衡。全面的管理需要在不同的使用者之间有效地分配地下水,如农业、工业和环境,同时也要平衡当代和后代对地下水的需求。

Resumo

O aumento da exploração das águas subterrâneas ameaça a sustentabilidade dos aquíferos para as gerações futuras. Fazer o melhor uso dos limitados recursos hídricos subterrâneos requer o conhecimento dos seus valores extrativos e não extrativos alternativos, assim como o custo de extração e as interligações hidrológicas entre usos alternativos. O valor da água subterrânea é impulsionado por uma série de fatores, incluindo a oferta e a procura e os fatores institucionais e políticos. Neste artigo, são descritos esses fatores e o modo como eles afetam o valor das águas subterrâneas. Também são descritas as várias componentes relevantes para a avaliação económica das águas subterrâneas e discutidos os possíveis problemas que se colocam na sua estimação. Argumenta-se que a gestão de águas subterrâneas é essencial quando há potenciais externalidades espaciais e temporais. Manter valores não extraíveis e opcionais é o mesmo que requerer valores comerciáveis com as atuais utilizações extrativas. Uma gestão adequada requer alocar eficientemente as águas subterrâneas entre os diferentes utilizadores, tais como a agricultura, a indústria e o ambiente, ao mesmo tempo que se equilibram as necessidades das gerações atuais e futuras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Sabbry MM, Harris D, Fox R (2002) An economic assessment of ground water recharge in the Tucson Basin. J Am Water Res Assoc 38:119–131

    Article  Google Scholar 

  • Associated Press (2010) Lawsuit challenges California groundwater pumping. June 24, 2010, Sacramento, CA, AP. Available at: http://www.capitalpress.com/content/AP-california-water-lawsuit-062410. Cited 4 May 2012

  • Bell JW, Amelung F, Ramelli AR, Blewitt G (2002) Land subsidence in Las Vegas, Nevada, 1935–2000: new geodetic data show evolution, revised spatial patterns, and reduced rates. Environ Eng Geosci 8:155–174. doi:10.2113/8.3.155

    Article  Google Scholar 

  • Bristow KL, Charlesworth PB, Narayan KA, Stewart LM Cook FJ, Hopmans JW (2003) AfFramework for improving water management in the Lower Burdekin. In: Post DA (ed) MODSIM 2003 International Congress on Modelling and Simulation, vol 2, July 2003, pp 206–211. Modelling and Simulation Society of Australia and New Zealand, The Australian National University, Canberra

  • Brown G Jr, Deacon R (1972) Economic optimization of a single-cell aquifer. Water Resour Res 8:557–564

    Article  Google Scholar 

  • Brozović N, Sunding DL, Zilberman D (2010) On the spatial nature of the groundwater pumping externality. Resour Energy Econ 32:154–164. doi:10.1016/j.reseneeco.2009.11.010

    Article  Google Scholar 

  • Chiew EHS, McMahon TA (1991) Groundwater recharge from rainfall and irrigation in the Campaspe River basin. Aus J Soil Res 29:651–670

    Article  Google Scholar 

  • Coggan SM, Whitten S, Abel N (2005) Accounting for water flows: Are entitlements to water complete and defensible and does this matter? In: Bennett J (ed) The evolution of markets for water: theory and practice in Australia. Elgar, Cheltenham, UK

    Google Scholar 

  • Crosbie RS, McCallum JL, Harrington GA (2009) Estimation of groundwater recharge and discharge across northern Australia. In: Anderssen RS, Braddock RD, and Newham LTH (eds) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, July 2009, pp 3053–3059. Available http://www.mssanz.org.au/modsim09/I1/crosbie.pdf. Cited 30 March 2012

  • CSIRO (2008) Water availability in the Murray: a report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Canberra

    Google Scholar 

  • FAO (1996) Control of water pollution from agriculture. FAO Irrigation and Drainage Paper 55. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2003) Groundwater management: the search for practical approaches. FAO Water Reports 25. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Faux J, Perry GM (1999) Estimating irrigation water value using hedonic price analysis: a case study Oregon, Malheur County. Land Econ 75:440–452

    Article  Google Scholar 

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45:W00A16. doi:10.1029/2007WR006785

    Article  Google Scholar 

  • Frederick S (2006) Valuing future life and future lives: a framework for understanding discounting. J Econ Psychol 27:667–680

    Article  Google Scholar 

  • Gisser M, Sanchez DA (1980) Competition versus optimal control in groundwater pumping. Water Resour Res 16:638–642

    Article  Google Scholar 

  • Gollier C, Weitzman ML (2010) How should the distant future be discounted when discount rates are uncertain? Econ Lett 107:350–353

    Article  Google Scholar 

  • Grafton RQ, Ward J, McGlennon S, Taylor B, McColl J (2009) A primer for water institutions and governance: concepts, definitions and measures. In: Stone P (ed) Northern Australia Land and Water Science Review 2009. Department of Infrastructure, Transport, Regional Development and Local Government, Canberra. Available at: http://www.nalwt.gov.au/files/Chapter_17_Primer_for_water_institutions_and_governance.pdf. Cited 30 March 2012

    Google Scholar 

  • Green G, Sunding D (2000) Designing environmental regulations with empirical microparameter distributions: the case of seawater intrusion. Resour Energy Econ 22:63–78

    Article  Google Scholar 

  • Hartman LM, Taylor G (1989) Irrigated land values in eastern Colorado. Technical Bulletin LTB 89–1, Colorado State University, Agricultural Experiment Station, Fort Collins, CO

  • Hathaway D (2010) Transboundary groundwater policy: Developing approaches in the Western and Southwestern United States. J Am Water Resour Assoc 1–11. doi:10.1111/j.1752-1688.2010.00494.x

  • IPCC (2007) IPCC fourth assessment report: Climate Change 2007, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Katic P, Grafton RQ (2011) Optimal groundwater extraction under uncertainty: resilience versus economic payoffs. J Hydrol. doi:10.1016/j.jhydrol.2011.06.016

  • Koundouri P (2004) Potential for groundwater management: Gisser–Sanchez effect reconsidered. Water Resour Res 40. doi:10.1029/2003WR002164

  • McCarl B, Dillon C, Keplinger K, Williams R (1999) Limiting pumping from the Edwards Aquifer: an economic investigation of proposals, water markets, and spring flow guarantees. Water Resour Res 35:1257–1268

    Article  Google Scholar 

  • McKusick V (2002) State of Kansas v. State of Nebraska and State of Colorado: Joint Motion of the States for Entry of Proposed Consent Judgement and Approval and Adoption of Final Settlement Stipulation, Supreme Court of the United States, Washington, DC

  • Melton LW (2003) Salinas Valley Water Project Engineer’s report. Monterey County Water Resources Agency, Salinas, Available at: http://www.mcwra.co.monterey.ca.us/SVWP/final_engineers_report.pdf. Accessed 1 April 2012

    Google Scholar 

  • Mezey EW, Conrad JM (2010) Real options in resource economics. Ann Rev Resour Econ 2:33–52

    Article  Google Scholar 

  • Msangi S, Howitt RE (2006) Third party effects and asymmetric externalities in groundwater extraction: the case of Cherokee Strip in Butte County, California. International Association of Agricultural Economists Conference, Gold Coast, Australia, 12–19 August 2006

    Google Scholar 

  • Narayana KA, Schleebergerb C, Charleswortha PB, Bristow KL (2003) Effects of groundwater pumping on saltwater intrusion in the Lower Burdekin Delta, North Queensland, In: Post DA (ed) MODSIM 2003 International Congress on Modelling and Simulation. 2:212–217. Modelling and Simulation Society of Australia and New Zealand. Available at: http://www.mssanz.org.au/MODSIM03/Volume_01/A04/10_Narayan.pdf. Accessed 30 March 2012

  • National Academy of Sciences (1997) Valuing ground water: economic concepts and approaches. National Academy Press, Washington, DC

    Google Scholar 

  • Negri DH (1989) The common property aquifer as a differential game. Water Resour Res 25:9–15

    Article  Google Scholar 

  • NWC (2011) A framework for managing and developing groundwater trading. GHD Waterlines Report Series no. 52. National Water Commission, Canberra, Australia

    Google Scholar 

  • Palazzo A (2009) FarmlLevel impacts of alternative spatial water management policies for the protection of instream flows, MSc Thesis, University of Illinois at Urbana-Champaign, USA

  • Parris K (2010) Sustainable management of water resources in agriculture. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Petrie RA, Taylor LO (2007) Estimating the value of water use permits: a Hedonic approach applied to farmland in the southeastern United States. Land Econ 83:302–318

    Google Scholar 

  • Provencher B, Burt O (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manag 24:39–158

    Article  Google Scholar 

  • Qureshi ME, Qureshi SE, Bajracharya K, Kirby M (2007) Integrated biophysical and economic modelling framework to assess impacts of alternative groundwater management options. Water Resour Manag. doi:10.1007/s11269-007-9164-1

  • Qureshi ME, Ranjan R, Qureshi SE (2010a) An empirical assessment of the value of water: a case study in the Murray-Darling Basin. Aus J Agric Resour Econ 54:99–118

    Google Scholar 

  • Qureshi ME, Schwabe K, Connor J, Kirby M (2010b) Environmental water incentive policy and return flow. Water Resour Res 46:W04517. doi:10.1029/2008WR007445

    Article  Google Scholar 

  • Reinelt P (2005) Seawater intrusion policy analysis with a numerical spatially heterogeneous dynamic optimization model. Water Resour Res 41:W05006. doi:10.1029/2004WR003111

    Article  Google Scholar 

  • Scanlon BR, Dutton AR, Sophocleous M (2003) Groundwater recharge in Texas. The University of Texas at Austin, Bureau of Economic Geology, Submitted to Texas Water Development Board, Austin, TX

  • Shindell D, Faluvegi G, Lacis A, Hansen J, Ruedy R, Aguilar E (2006) Role of tropospheric ozone increases in 20th century climate change. J Geophys Res 111:D08302. doi:10.1029/2005JD006348

    Article  Google Scholar 

  • Shrestha S, Kataoka Y (2008) Groundwater and climate change: no longer the hidden resource. In: Climate change policies in the Asia-Pacific: re-uniting climate change and sustainable development, chap 7. Institute for Global Environmental Strategies, Kanagawa, Japan

    Google Scholar 

  • Shukla S, Jaber FH (2006) Groundwater recharge from agricultural areas in the Flatwoods Region of South Florida, Fact Sheet ABE370. Florida Cooperative Extension, Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL

    Google Scholar 

  • Smith C (2007) Years after endangered species battle, numbers of tiny Idaho snail are still dwindling. Associated Press, January 2, 2008. Available at: Available at: http://legacy.utsandiego.com/news/nation/20070102-0020-bruneauspringsnail.html. Cited 4 May 2012. Cited 8 May 2012

  • Stern N (2006) Stern review on the economics of climate change. HM Treasury, London

    Google Scholar 

  • Torell LA, Libbin JD, Miller MD (1990) The market value of water in the Ogallala Aquifer. Land Econ 66:163–175

    Article  Google Scholar 

  • Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface water supplies. J Environ Econ Manag 21:201–224

    Article  Google Scholar 

  • USDA (1999) Agriculture fact book. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Wilson MA, Stephen R, Carpenter SR (1999) Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol Appl 9:772–783

    Google Scholar 

  • Xu F, Mittelhammer RC, Barkley PW (1993) Measuring the contributions of site characteristics to the value of agricultural land. Land Econ 69:356–369

    Article  Google Scholar 

  • Zagonari F (2010) Sustainable, just, equal, and optimal groundwater management strategies to cope with climate change: insights from Brazil. Water Resour Manag 24:3731–3756

    Article  Google Scholar 

Download references

Acknowledgements

This paper was produced as part of the CSIRO Flagship Program ‘Water for a Healthy Country’. The authors acknowledge Nick Abel, Doug Cocks and two anonymous reviewers for their comments and valuable suggestions. Nick Brozović’s contribution is based upon work supported by the National Science Foundation under Grant No. EAR-0709735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ejaz Qureshi.

Appendix 1

Appendix 1

Table 1 Definition of key economic terms used

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, M.E., Reeson, A., Reinelt, P. et al. Factors determining the economic value of groundwater. Hydrogeol J 20, 821–829 (2012). https://doi.org/10.1007/s10040-012-0867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0867-x

Keywords

Navigation