Abstract
Steady, two-dimensional Darcian flow in a homogeneous isotropic unconfined aquifer, bounded from below by a rectangular wedge representing bedrock, is studied by the theory of holomorphic functions. A triangle of the complex potential domain is mapped onto a circular triangle in the hodograph plane with the help of an auxiliary variable. A full potential theory results in closed-form integral representations for the complex potential and complex velocity, from which the flow rate and free surface are calculated using computer algebra built-in functions. This solution, uniformly valid in the whole flow domain, is compared with simpler approximate ones, retrieved from an analytical archive. Two flow zones are distinguished: a tranquil subdomain where the Dupuit-Forchheimer approximation is suitable and a nappe (a subdomain with a rapidly changing Darcian velocity and steep slope of the phreatic surface) where the Numerov or Polubarinova-Kochina solutions, in terms of the full potential model, are available. Approximations in the two zones are conjugated by matching the positions of the water table and the flow rates, which eventually agree well with the obtained comprehensive solution.
Résumé
L’écoulement en 2D de type Darcy en régime permanent dans un aquifère libre homogène et isotrope, limité à sa base par un rectangle représentant le substrat, est étudié selon la théorie des fonctions holomorphiques. Un triangle du domaine complexe de la charge hydraulique est cartographié sur un triangle circulaire dans un plan hodographique avec l’aide d’une variable auxiliaire. Une théorie complète de la charge hydraulique résulte des représentations d’intégrales fermées pour la charge hydraulique et la vitesse, à partir desquelles le flux et la surface libre sont calculés en ayant recours à des fonctions algébriques. Cette solution, valide de manière uniforme dans la totalité du domaine d’écoulement, est comparée avec des solutions basées sur des approximations simplifiées disponibles dans des archives analytiques. Deux zones d’écoulement sont distinguées : un sous domaine tranquille où l’approximation de Dupuit-Forchheimer est applicable (un sous domaine avec une modification rapide de la vitesse de Darcy et un fort gradient hydraulique de la surface phréatique), pour lequel les solutions de Numerov ou de Polubarinova-Kochina, en termes de modèle complet à charge hydraulique sont valables. Les approximations dans les deux zones sont rapprochées en comparant les positions du niveau piézométrique et les vitesses d’écoulement, qui finalement correspondent bien avec ceux obtenus à l’aide de la solution complète.
Resumen
Mediante la teoría de las funciones holomórficas se estudió el flujo Darciano estacionario bidimensional, en un acuífero isotrópico homogéneo no confinado limitado abajo por una cuña rectangular que representa al basamento. Se mapea un triángulo del dominio potencial complejo sobre una triángulo circular en el plano hodográfico con la ayuda de una variable auxiliar. Una teoría de potencial completo da como resultado representaciones integrales para el potencial complejo y la velocidad compleja, a partir de las cuales la tasa de flujo y la superficie libre son calculadas usando funciones algebraicas predeterminadas en computadoras. Esta solución, uniformemente válida en el dominio de flujo total se compara con aproximaciones más simples, recuperadas de un archivo analítico. Se distinguen dos zonas de flujo: un subdominio en reposo donde la aproximación de Dupuit-Forchheimer es apropiada y una en capas (un subdominio con una velocidad Darcianas rápidamente cambiante y una pendiente fuerte de la superficie freática) donde están disponibles las soluciones de Numerov o Polubarinova-Kochina, en términos del modelo completo de potencial. Las aproximaciones en ambas zonas se conjugan por comparando las posiciones del nivel freático y las tasas de flujo, lo cual finalmente tiene un buen acuerdo con las soluciones abarcativas obtenidas.
摘要
利用全纯函数理论研究了底部以矩形楔状代表性基岩为界的均质各向同性非承压含水层中的稳定二维达西流。借助辅助变量,把复位势域中的三角形区域投影到了时距曲线平面中的圆弧三角形。利用计算机内置的代数函数计算出流速和自由表面,由此,利用全位势理论得到了复位势和复速度的闭合积分表示形式。这个方法在整个流速范围内都是有效的,并和从分析方法档案中检索到的简单近似的方法进行了比较。对两个流区进行了区别:适合用Dupuit-Forchheimer逼近法的平静的子域和从全位势模型角度来看适合用Numerov 或者Polubarinova-Kochina方法的推覆体(具有快速变化的达西流速和陡的潜水面的子域)。这两个流区的近似值通过匹配潜水面的位置和流速进行了结合,最后得到的结果和已有的综合方法得到的结果符合的很好。
Resumo
Pela teoria das funções holomórficas é estudado o fluxo de Darcy bidimensional permanente num aquífero homogéneo e isotrópico livre, limitado inferiormente por uma cunha retangular que representa uma base rochosa. É traçado um triângulo do domínio potencial complexo sobre um triângulo circular no plano hodográfico com o auxílio de uma variável auxiliar. A aplicação da teoria de potencial pleno resultou em representações integrais de forma fechada para o potencial complexo e para a velocidade complexa, a partir dos quais a taxa de fluxo e a superfície livre foram calculados usando funções algébricas internas do computador. Esta solução, uniformemente válida em todo o domínio de fluxo, é comparada com soluções aproximadas mais simples, obtidas num arquivo analítico. Distinguem-se dois domínios de fluxo: um subdomínio tranquilo, onde a aproximação de Dupuit-Forchheimer é adequada e uma nappe (um subdomínio com uma velocidade de Darcy a variar rapidamente e com um forte declive da superfície freática) onde, em termos de modelo potencial pleno, estão disponíveis as soluções de Numerov ou de Polubarinova-Kochina. As aproximações nas duas zonas são conjugadas através da combinação das posições da superfície freática e das taxas de fluxo, as quais finalmente concordam bem com a solução abrangente obtida.
Aбcтpaкт
Meтoдaми тeopии гoлoмopфныx функций иccлeдуeтcя уcтaнoвившaяcя двумepнaя фильтpaция в oднopoднoм бeзнaпopнoм плacтe, oгpaничeннoм cнизу нeпpoницaeмым ocнoвaниeм в видe пpямoгo углa. C пoмoщью вcпoмoгaтeльнoй пoлуплcoкocти пocтpoeнo oтoбpaдeниe тpeугoльникa oблacти кoмплeкcнoгo пoтeнциaлa нa кpугoвoй тpeугoльник oблacти гoдoгpaфa. Иcпoльзoвaннaя тeopия пoтeнциaлa дaeт в зaмкнутoм видe интeгpaльныe пpeдcтaвлeния для кoмплeкcнoгo пoтeнциaлa и кoмплeкcнoй cкopocти, из кoтopыx c пoмoщью пaкeтa кoмпьютepнoй aлгeбpы нaйдeны pacxoд тeчeния и дeпpeccиoннaя кpивaя. Этo peшeниe вepнo вo вceй oблacти тeчeния, и oнo cpaвнивaeтcя c пpиближeнными peшeниями из извecтнoгo aнaлитичecкoгo apxивa. A имeннo, выдeлeнa пoдoблacть мeдлeннoгo тeчeния, гдe вepнo пpиближeниe Дюпюи-Фopгxaймepa, и пoдoблacть быcтpoй « cтpуи», гдe вeликa cкopocть фильтpaции и нaклoн cвoбoднoй пoвepxнocти и гдe извecтны пpиближeнныe фopмулы Hумepoвa и Пoлубapинoвoй-Кoчинoй. Пpиближeгния в укaзaнныx двуx зoнax cpaщивaютcя путeм пpиpaвнивaния cooтвeтcвующиx выcoт кpивoй дeпpeccи и pacxoдa, в peзультaтe чeгo пoлучaeтcя xopoшee coглacoвaниe c пoлным peшeниeм.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abdalla O, Al-Abri RY (2011) Groundwater recharge in arid areas induced by tropical cyclones: lessons learned from Gonu 2007 in Sultanate of Oman. Environ Earth Sci 63(2):229–239. doi:10.1007/s12665-010-0688-y
Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York
Dias F, Vanden-Broeck JM (2011) Potential-flow studies of steady two-dimensional jets, waterfalls, weirs and sprays. J Eng Math 70:165–174. doi:10.1007/s10665-010-9441-5
Kacimov AR (2004) Capillary fringe and unsaturated flow in a reservoir porous bank. J Irrigat Drain Eng ASCE 130:403–409
Kacimov AR (2006a) Capillarity and evaporation exacerbated seepage losses from unlined channels. J Irrigat Drain Eng ASCE 132:623–626
Kacimov AR (2006b) Analytical solution and shape optimisation for groundwater flow through a leaky porous trough subjacent to an aquifer. Proc Roy Soc Lond A 462:1409–1423
Kacimov AR, Nicolaev AN (1992) Steady seepage near an impermeable obstacle. J Hydrol 138:17–40
Kacimov AR, Obnosov YuV (2001) Analytical solutions by the hodograph method to hydrodynamic problems for oil and gas traps. J Hydrol 254:33–46
Kacimov AR, Obnosov YuV (2008) Analytical solution to 2D problem for an anticline-diverted brine flow with a floating hydrocarbon trap. Transport Porous Media 71:39–52. doi:10.1007/s11242-007-9110-y
Kacimov AR, Obnosov YuV (2012) Analytical solutions for seepage near material boundaries in dam cores: the Davison-Kalinin problems revisited. Appl Math Model 36:1286–1301. doi:10.1016/j.apm.2011.07.088
Kacimov AR, Obnosov YuV, Al-Maktoumi A, Al-Balushi M (2011) How much of floating LNAPL can a phreatic surface sustain? Riesenkampf's scheme revisited. Water Resour Res 47:W11521. doi:10.1029/2010WR010369
Li W, Liu Z, Guo H, Li N, Kang W (2011) Simulation of a groundwater fall caused by geological discontinuities. Hydrogeology J 19:1121–1133. doi:10.1007/s10040-011-0747-9
Polubarinova-Kochina PY (1977) Theory of ground-water movement (in Russian). Nauka, Moscow
Strack ODL (1989) Groundwater mechanics. Prentice Hall, Englewood Cliffs, NJ
Toth J (2009) Gravitational systems of groundwater flow. Cambridge Univ. Press, Cambridge
Vacher H, Williams C, Budd DA (2006) Metaphors and models: the ASR bubble in the Floridian aquifer. Ground Water 44:144–154
Wang XS, Neuman SP, Strack ODL, Verruijt A, Jamali M, Seymour B, Bear J, Cheng AHD, Chen C, Kuang X, Jiao JJ (2011) Methods to derive the differential equation of the free surface boundary. Ground Water 49:133–143. doi:10.1111/j.1745-6584.2010.00773.x
Wolfram S (1991) Mathematica: a system for doing mathematics by computer. Addison-Wesley, Redwood City, CA
Acknowledgements
This work has been supported by the grant No. SR/SCI/ETHS/11/01 “Estimating natural groundwater recharge and discharge in North Oman”, His Majesty Research Trust Fund (Oman). Helpful comments by two anonymous reviewers are appreciated.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary materials
Below is the link to the electronic supplementary material.
ESM 1
(PDF 487 kb)
Rights and permissions
About this article
Cite this article
Kacimov, A.R. Analytical solution for a phreatic groundwater fall: the Riesenkampf and Numerov solutions revisited. Hydrogeol J 20, 1203–1209 (2012). https://doi.org/10.1007/s10040-012-0857-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-012-0857-z


