Skip to main content

Advertisement

Log in

Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka

Surexploitation de l’eau souterraine et inefficacité technique à l’échelle de l’exploitation agricole : exemple du Sri Lanka

Uso excesivo de agua subterránea e ineficiencia técnica a nivel de finca: evidencia de Sri Lanka

地下水过度使用和农场等级技术的低效率: 来自斯里兰卡的证据

Uso exagerado da água subterrânea e ineficiência técnica a nível agrícola: evidências do Sri Lanka

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Extraction of groundwater for onion and other cash crop production has been increasing rapidly during the last two decades in the dry zone areas of Sri Lanka. As a result of overuse, the quantity of available groundwater is gradually declining, while water quality is deteriorating. The deteriorating water quality has a negative impact on agricultural production, especially for crops (such as onions) that are sensitive to increases in salinity levels. This issue is examined with respect to onion production in Sri Lanka. A stochastic frontier production function (SFPF) is used, in which technical efficiency and the determinants of inefficiencies are estimated simultaneously. The results show that farmers are overusing groundwater in their onion cultivation, which has resulted in decreasing yields. Factors contributing to inefficiency in production are also identified. The results have important policy implications.

Résumé

L’exploitation d’eau souterraine pour la production de l’oignon et autre culture destinée à la vente a cru rapidement durant les deux dernières décennies dans des secteurs de la zone aride du Sri Lanka. Par suite de la surexploitation, la quantité d’eau souterraine disponible diminue progressivement tandis que la qualité de l’eau se détériore. Cette dégradation a un impact négatif sur la production agricole, particulièrement sur les cultures (telles les oignons) sensibles à l’augmentation de la salinité. Cette question est examinée à propos de la production de l’oignon au Sri Lanka. Un modèle de production à frontière stochastique (FPFS) est établi, dans lequel l’efficacité technique et les facteurs d’inefficacités sont estimés simultanément. Les résultats montrent que les cultivateurs surexploitent l’eau souterraine pour leurs cultures d’oignon, ce qui s’est traduit par des rendements décroissants. Les facteurs contribuant à l’inefficacité de la production sont également identifiés. Les résultats ont d’importantes implications politiques.

Resumen

La extracción del agua subterránea para la producción de cebolla y otros cultivos comerciales se ha incrementado rápidamente durante las últimas dos décadas en las áreas secas de Sri Lanka. Como un resultado del uso excesivo, la cantidad de agua subterránea disponible está declinando gradualmente, mientras que la calidad del agua se está deteriorando. El deterioro de la calidad de agua tiene un impacto negativo sobre la producción agrícola, especialmente para los cultivos (tales como la cebolla) que son sensibles al incremento en los niveles de salinidad. Este tema se examina con respecto a la producción de cebolla en Sri Lanka. Se utilizó una función estocástica de producción de frontera (SFPF) en las cuales la eficiencia técnica y los factores determinantes de las ineficiencias son estimadas simultáneamente. Los resultados muestran que los agricultores están haciendo un uso excesivo del agua subterránea en sus cultivos de cebolla lo que ha resultado en rendimientos decrecientes. También se han identificado los factores que contribuyen a la ineficiencia. Los resultados tienen importantes implicancias políticas.

摘要

在过去二十年里,斯里兰卡干旱地区灌溉洋葱及其它经济作物而引起地下水开采增长迅速。过度使用的结果就是,可用地下水的质量逐渐下降,同时水质也恶化了。水质恶化对农业生产具有消极影响,尤其是农作物(例如洋葱),其对含盐程度的提高是敏感的。这个问题在斯里兰卡针对洋葱生产进行了验证。采用随机边界生产函数(SFPF)方法同时估计了技术效率和低效率的决定因素。结果显示农民过度使用地下水灌溉洋葱导致了开采量的降低。生产的低效率因素也确定了。结果具有重要的政策涵义。

Resumo

A extração de água subterrânea para produção de cebola e outras culturas para venda tem vindo a aumentar durante as últimas duas décadas nas zonas áridas do Sri Lanka. Como resultado do uso exagerado, a quantidade de água subterrânea disponível diminui gradualmente, enquanto a qualidade da água se deteriora. A deterioração da qualidade da água tem um impacte negativo sobre a produção agrícola, especialmente para as culturas (como as cebolas) que são sensíveis a um incremento nos níveis de salinidade. O assunto é examinado com respeito à produção de cebola no Sri Lanka. É usada uma função estocástica de fronteira de produção (stochastic frontier production function, SFPF, em inglês), na qual a eficiência técnica, bem como os determinantes de ineficiências, são estimados simultaneamente. Os resultados mostram que os agricultores usam água em exagero na cultura da cebola, o que tem resultado no decréscimo da produtividade das captações. Os fatores que contribuem para a ineficiência da produção são também identificados. Os resultados têm uma implicação importante nas políticas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aigner DJC, Lovell AK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econometrics 6(1):21–37

    Article  Google Scholar 

  • Amos TT, Chikwendu DO, Nmadu JN (2004) Productivity, technical efficiency and cropping patterns in the Savanna zone of Nigeria. Int J Food Agric Environ 2(2):173–176

    Google Scholar 

  • Athukorala W (2011) Essays on irrigation development, farm production and unaccounted costs: Theory and empirical evidence. PhD Thesis, Queensland University of Technology, Brisbane, Australia

    Google Scholar 

  • Battese GE (1992) Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics. Agric Econ 7(3):1985–1208

    Article  Google Scholar 

  • Battese GE, Coelli TJ (1988) Prediction of farm level technical efficiencies with a generalized frontier production function and panel data. J Econometrics 38(3):387–399

    Article  Google Scholar 

  • Battese GE, Coelli TJ (1995) A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir Econ 20(2):325–332

    Article  Google Scholar 

  • Bhatia R, Cestti R, Winpenny J (1992) Water Cconservation and reallocation: best practice—cases in improving economic efficiency and environmental quality. World Bank, Washington DC

    Google Scholar 

  • Bravo-Ureta BE, Pinheiro AE (1993) Efficiency analysis of developing country agriculture: a review of the frontier function literature. Agric Resour Econ Rev 22(1):88–101

    Google Scholar 

  • Brown G Jr (1974) An optimal program for managing common property resources with congestion externalities. J Pol Econ 82(1):163–173

    Article  Google Scholar 

  • Coelli TJ (1995) Recent developments in frontier modeling and efficiency measurement. Aust J Agric Econ 39(3):219–245

    Article  Google Scholar 

  • CoelliTJ (1996) A guide to FRONTIER version 4.1: a computer program for stochastic frontier production and cost function estimation, CEPA working papers No. 7/96, Dept. of Econometrics, University of New England, Armidale, Maine

  • Coelli TJ, Rao DSP, O’Donnell CJ, Battese GE (2005) An introduction to efficiency and productivity analysis. Springer, New York

    Google Scholar 

  • Conyers MK, Hume I, Summerell G, Slinger D, Mitchell M, Cawley R (2008) The ionic composition of the streams of the Mid-Murrumbidgee River: implications for the management of downstream salinity. Agric Water Manage 95(5):598–606

    Article  Google Scholar 

  • Cooray PG (1984) An introduction to the geology of Sri Lanka (Ceylon). Department of Government Printing, Colombo, Sri Lanka

    Google Scholar 

  • Corwin DL, Rhoades JD, Simunek J (2007) Leaching requirement for soil salinity control: steady-state versus transient models. Agric Water Manage 90(3):165–180

    Article  Google Scholar 

  • Department of Census and Statistics (2007) Household income and expenditure survey in 2007. Department of Census and Statistics, Colombo

    Google Scholar 

  • Department of Census and Statistics (2010) Statistical abstract 2010. Department of Census and Statistics, Colombo

    Google Scholar 

  • De Silva CS, Ayomi N (2004) Impact of intensive vegetable cultivation on agro-well water quality in Malsiripura Region of Kurunagela district. Water Professional Symposium, Geo-Informatics Society of Sri Lanka, Colombo, pp 121-133

  • Dissanayake CB (1992) A decade of hydrogeological contributions to community development in Sri Lanka. J Geol Soc Sri Lanka 4:3–10

    Google Scholar 

  • Dissanayake CB (2005) Water quality in the dry zone of Sri Lanka: some interesting health aspects. J Nat Sci Found Sri Lanka 33(3):161–168

    Google Scholar 

  • Dissanayake CB, Weerasooriya SVR (1985) The hydrogeochemical atlas of Sri Lanka. Natural Resources, Energy and Science Authority of Sri Lanka (NARESA), Colombo

    Google Scholar 

  • Diwakara H, Chandrakanth MG (2007) Beating negative externality through groundwater recharge in India: a resource economic analysis. Environ Dev Econ 12(2):271–296

    Article  Google Scholar 

  • Fleming RA, Adams RM (1997) The importance of site-specific information in the design of policies to control pollution. J Environ Econ Manage 33(3):347–358

    Article  Google Scholar 

  • Gisser M, Sanchez D (1980) Competition versus optimal control in groundwater pumping. Water Resour Res 16:638–642

    Article  Google Scholar 

  • Hajkowicz S, Young M (2005) Costing yield loss from acidity, sodicity and dryland salinity to Australian agriculture. Land Degrad Dev 16(5):417–433

    Article  Google Scholar 

  • Hellegers P, Zilberman D, Ierland E (2001) Dynamics of agricultural groundwater extraction. Ecol Econ 37(2):303–311

    Article  Google Scholar 

  • Howe CW (2002) Policy issues and institutional impediments in the management of groundwater: lessons from case studies. Environ Dev Econ 7(4):625–641

    Google Scholar 

  • IWMI (2003) Water policy briefing. IWMI, Colombo

    Google Scholar 

  • Khan S, Rana T, Hanjra MA, Zirilli J (2009) Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue? Agric Water Manage 96(3):493–503

    Article  Google Scholar 

  • Kijne JW (2006) Salinisation in irrigated agriculture in Pakistan: mistaken predictions. Water Policy 8(4):325–338

    Article  Google Scholar 

  • Kikuchi M, Weligamage P, Barker R, Samad M, Kono H, Somaratne HM (2003) Agrowell and pump diffusion in the dry zone of Sri Lanka: past trends, present status and future prospects. Research report 66. IWMI, Colombo

  • Knapp KC, Feinerman E (1987) The optimal steady-state in groundwater management. J Am Water Resour Assoc 23(4):717–721

    Article  Google Scholar 

  • Kodde D, Palm F (1986) Wald criteria for jointly testing equality and inequality restrictions. J Econometrica 54:1243–1248

    Article  Google Scholar 

  • Kuruppuarachchi DSP, Fernando WARN (1999) Impact of agriculture on groundwater quality: leaching of fertilizers to groundwater in Kalpitiya Peninsula. J Soil Sci Sri Lanka 11:9–16

    Google Scholar 

  • Lee LK (1998) Groundwater quality and farm income: what have we learned. Rev Agric Econ 20(1):168–195

    Article  Google Scholar 

  • Lee DJ, Howitt RE (1996) Modelling regional agricultural production and salinity control alternatives for water quality policy analysis. Am J Agric Econ 78(1):41–53

    Article  Google Scholar 

  • Liyanage CE, Thabrew MI, Kuruppuarachchi DSP (2000) Nitrate pollution in groundwater of Kalpitiya: an evaluation of the content of nitrates in the water and food items cultivated in the area. J Nat Sci Found Sri Lanka 28(2):101–112

    Google Scholar 

  • Maheswaran R, Mahalingam S (1983) Nitrate–nitrogen content of well water and soil from selected areas in the Jaffna Peninsula. J Nat Sci Counc Sri Lanka 2(1):269–275

    Google Scholar 

  • Meeusen W, Van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production function with composed error. Int Econ Rev 18(2):435–444

    Article  Google Scholar 

  • Morris BL, Lawrence AR, Chilton PJ, Adams B, Calow R, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problems and options for management. Early Warning and Assessment Report Series no. 03. United Nations Environment Programme, Nairobi, Kenya

  • Nagarajah S, Gamage H (1998) Groundwater utilization for crop production in the dry zone of Sri Lanka. In: Proceedings of symposium “Groundwater resources of Sri Lanka,” Kandy, Sri Lanka, 2 December 1997

  • Ogunyinka EO, Ajibefun IA (2004) Determinants of technical inefficiency on farm production: Tobit analysis approach to the NDE farmers in Ondo state, Nigeria. Int J Agric Biol 6(2):355–368

    Google Scholar 

  • Panabokke CR, Pathirana SRK, Wijekoon D (2002) Water quality of agro-well in the coastal sand aquifier in the Trincomalee district. Proceedings of the Symp. on the use of Groundwater for Agriculture in Sri Lanka, Peradeniya, Sri Lanka, 30 September 2002

  • Pannell D (2009) Comments on accounting for groundwater quantity depletion and quality determination externalities simultaneously, PhD Conference in Economics and Business, University of Western Australia, Crawley, Australia, 4–6 November 2009

  • Peck AJ, Hatton T (2003) Salinity and the discharge of salts from catchments in Australia. J Hydrol 272(1–4):191–202

    Article  Google Scholar 

  • Provencher B, Burt O (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manage 24(2):139–158

    Article  Google Scholar 

  • Reddy RV (2005) Costs of resource depletion externalities: a study of groundwater overexploitation in Andhra Pradesh. Environ Dev Econ 10(4):533–556

    Article  Google Scholar 

  • Rubio SJ, Casino B (2001) Competitive versus efficient extraction of a common property resource: the groundwater case. J Econ Dyn Control 25(8):1117–1137

    Article  Google Scholar 

  • Seo NS, Mendelsohn RA, Munasinghe M (2005) Climate change and agriculture in Sri Lanka: a Ricardian valuation. Environ Dev Econ 10:581–596

    Article  Google Scholar 

  • Shiferaw B, Ratna Reddy V, Wan SP (2008) Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: the effect of alternative water pricing policies. Ecol Econ 67(2):327–340

    Article  Google Scholar 

  • Shortt R, Boelee E, Matsuno Y, Faubert G, Madramootoo C, Hoek WVD (2003) Evaluation of thermotolerant coliforms and salinity in the four available water sources of an irrigated region of southern Sri Lanka. Irrig Drain 52:133–146

    Article  Google Scholar 

  • Shehu JF, Mshelia SI, Tashikalma AK (2007) Analysis of technical efficiency of small-scale rain-fed upland rice farmers in north-west agricultural zone of Adamawa State, Nigeria. J Agric Social Sci 4(3):133–136

    Google Scholar 

  • Simmers I (1997) Recharge of phreatic aquifers in (semi-) arid areas. IAH International Contributions to Hydrogeology. Taylor and Francis, Rotterdam, The Netherlands

    Google Scholar 

  • Soltanpour, PN, Follett RH (1995) Crop Tolerance to Soil Salinity. Soil Management Publications. Colorado State University. Retrieved May 18, 2010, from http://www.ext.colostate.edu/pubs/pubs.html#crops

  • Srinivasan JT, Reddy VR (2009) Impact of irrigation water quality on human health: a case study in India. Ecol Econ 68(11):2800–2807

    Article  Google Scholar 

  • Stevenson RE (1980) Likelihood functions for generalised stochastic frontier estimation. J Econometrics 13:57–66

    Article  Google Scholar 

  • Villholth KG, Rajasooriyar LD (2010) Groundwater resources and management challenges in Sri Lanka: an overview. Water Resour Manage 24:1489–1513

    Article  Google Scholar 

  • Wichelns D (1999) An economic model of waterlogging and salinization in arid regions. Ecol Econ 30(3):475–491

    Article  Google Scholar 

  • Wichelns D, Cone D, Stuhr G (2002) Evaluating the impact of irrigation and drainage policies on agricultural sustainability. Irrig Drain Syst 16(1):1–14

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the comments and suggestions received from two reviewers and the editor of the special issue of Hydrogeology Journal, which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasantha Athukorala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athukorala, W., Wilson, C. Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka. Hydrogeol J 20, 893–905 (2012). https://doi.org/10.1007/s10040-012-0833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0833-7

Keywords

Navigation