Skip to main content

Advertisement

Log in

Urban land-use effects on groundwater phosphate distribution in a shallow aquifer, Nanfei River basin, China

Effets de l’usage agricole d’un effluent urbain sur la distribution des phosphates dans un aquifère superficiel, bassin de la Rivière Nanfei, Chine

Efectos del uso urbano de la tierra en la distribución de fosfatos en el agua subterránea en un acuífero somero, Cuenca del Río Nanfei, China

城市土地利用对中国南淝河流域潜水含水层地下水磷酸盐分布的影响

Efeitos do uso do solo urbano na distribuição de fosfato nas águas subterrâneas de um aquífero superficial na bacia do Rio Nanfei, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater, surface water, soil and river sediment samples, and information on land use in the Nanfei River basin (NRB) of China have been analyzed to study the geochemistry, distribution, and mobilization of phosphorus. The distribution of phosphate (PO 3–4 ) and the relationships between PO 3–4 and several constituents in groundwater were studied. Partial correlation analysis relating PO 3–4 to types of land use was conducted using the data analyzing tool SPSS 15.0. The processes controlling the transport of PO 3–4 are discussed. The conclusions from this study are: (1) urban land use has obvious impact on PO 3–4 in groundwater, the average concentration of PO 3–4 being 4.37 mg/L, greater than that resulting from farmland and mixed land use, which have average PO 3–4 concentrations of 0.10 and 0.18 mg/L, respectively; (2) the partial correlation between PO 3–4 and types of land use is significant with a coefficient of 0.760; (3) the PO 3–4 concentrations in surface water are generally higher than those in groundwater, and the total phosphorus (TP) concentrations in river sediments are generally higher than those in soil samples; (4) groundwater is a carrier of PO 3–4 and is likely responsible for the redistribution of PO 3–4 in different regions of NRB.

Résumé

Des échantillons d’eau de surface, de nappe, de sol et de sédiments alluvionnaires, et des informations sur son utilisation agricole dans le bassin de la Rivière Nanfei (NRB), Chine, ont été analysés pour étudier la géochimie, la distribution et la mobilisation du phosphore. La distribution du phosphate (PO 3–4 ) et la relation entre PO 3–4 et plusieurs composés dans la nappe ont été étudiés. Une analyse de corrélation partielle entre PO 3–4 et les types d’applications agricoles a été menée en utilisant l’outil d’analyse de données SPSS 15.0. Les processus contrôlant le transport de PO 3–4 sont discutés. Les conclusions de cette étude sont : (1) l’utilisation agricole d’effluent urbain a un impact évident sur (PO 3–4 ) dans l’eau de nappe, la concentration moyenne en PO 3–4 étant 4.37 mg/L, supérieure à celles résultant de l’agriculture et d’un usage agricole mixte, qui présentent des moyennes de 0.10 et 1.18 mg/L respectivement; (2) la corrélation partielle entre (PO 3–4 ) et les types d’utilisation agricole est significative avec un coefficient de 0.760; (3) les concentrations (PO 3–4 ) dans l’eau de surface sont généralement supérieures à celles de l’eau de nappe et les concentrations en phosphore total (TP) dans les sédiments fluviatiles sont généralement supérieures à celles des échantillons de sol; (4) l’eau de la nappe est un vecteur de PO 3–4 et est vraisemblablement responsable de la redistribution de PO 3–4 dans différentes régions du NRB.

Resumen

Se analizaron muestras de agua subterránea, agua superficial, suelo y sedimentos, e información sobre el uso de la tierra en la cuenca del Río Nanfei (NRB) de China para estudiar la geoquímica, y la distribución y movilización del fósforo. Se estudiaron la distribución de fosfato (PO 3–4 ) y la relación entre PO 3–4 y varios constituyentes en el agua subterránea. Se llevaron a cabo análisis de correlación parcial que relacionan PO 3–4 con los tipos de uso de la tierra usando el análisis de datos con la herramienta SPSS 15.0. Se discuten los procesos que controlan del transporte de PO 3–4 . Las conclusiones de este estudio son: (1) el uso urbano de la tierra ha tenido un obvio impacto sobre el PO 3–4 en el agua subterránea, siendo la concentración promedio de PO 3–4 de 4.37 mg/L, mayor que los que resultan de tierras de cultivo y uso mixto de la tierra, que tienen concentraciones promedio de PO 3–4 de 0.10 y 0.18 mg/L, respectivamente; (2) la correlación parcial entre PO 3–4 y los tipos de uso de la tierra es significativa con un coeficiente de 0.760; (3) las concentraciones de PO 3–4 en el agua superficial son generalmente mayores que en el agua subterránea, y las concentraciones de fósforo total (TP) en los sedimentos fluviales son generalmente mayores que aquellas de las muestras de suelo; (4) el agua subterránea es un portador de PO 3–4 y es muy probablemente el responsable de la redistribución del PO 3–4 en diferentes regiones de NRB.

摘要

本文通过取样分析了中国南淝河流域地下水、地表水、土壤与河流沉积物以及对应的土地利用信息,研究了磷素的地球化学、分布以及迁移特征。研究了磷酸盐分布特征及其与地下水中相关组分的关系;利用SPSS15.0 统计工具对磷酸盐和土地利用进行了偏相关分析;讨论了磷酸盐迁移的控制过程;得到主要结论如下:(1)城市土地利用类型对地下水磷酸盐分布有显著影响,其中地下水中磷酸盐平均浓度,城市土地利用类型为4.37 mg/L, 明显高于农业用地0.10 mg/L以及混合土地利用类型0.18 mg/L;(2)磷酸根离子含量与土地利用类型的偏相关系数为0.76;(3)地表水中的磷酸盐浓度一般高于地下水中的浓度,河流沉积物中的总磷含量高于土壤总磷含量;(4)地下水是磷酸盐的载体,对南淝河流域不同区段磷素分布可能具有重要影响。

Resumo

Foram analisadas amostras de águas subterrâneas, de águas superficiais, sedimentos de solo e do rio e informações sobre uso do solo na bacia do Rio Nanfei (BRN), China, para estudar a geoquímica, a distribuição e a mobilização do ião fosfato. Foram estudadas as relações de distribuição de fosfato (PO 3–4 ) e as relações entre PO 3–4 e diversos componentes nas águas subterrâneas. Foi realizada uma análise de correlação parcial relacionando PO 3–4 com tipos de uso do solo com recurso a ferramenta de análise de dados SPSS 15.0. São discutidos os processos que controlam o transporte de PO 3–4 . As conclusões deste estudo são: (1) ol uso do solo urbano tem um impacte óbvio no PO 3–4 nas águas subterrâneas, onde a concentração média de PO 3–4 é de 4.37 mg/L, superior à encontrada em solos de uso agrícola e solos de usos mistos, que têm médias de concentrações de PO 3–4 de 0.10 e 0.18 mg/L, respetivamente; (2) a correlação parcial entre PO 3–4 e os tipos de uso do solo é significativa, com um coeficiente de 0.760; (3) as concentrações do PO 3–4 nas águas superficiais são, geralmente, mais elevadas do que nas águas subterrâneas, e as concentrações de fósforo total (FT) nos sedimentos do rio são, regra geral, mais elevadas do que nas amostras de solo; (4) a água subterrânea é um transmissor do PO 3–4 e é provavelmente responsável pela redistribuição de PO 3–4 em diferentes regiões do BRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen JM (1974) Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish Lakes. Arch Hydrobiol 74:528–550

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality of agriculture. FAO Irrigation and Drainage Paper 29, Rev. 1. Rome, pp 29–31

    Google Scholar 

  • Belanger TV, Mikutel DF (1985) On the use of seepage meters to estimate groundwater nutrient loading to lakes. J Am Water Resour Assoc 21(2):265–272

    Article  Google Scholar 

  • Boers P, Van der Does J, Quaak M, Van der Vlugt J (1994) Phosphorus fixation with iron (III) chloride: a new method to combat internal phosphorus loading in shallow lakes? Arch Hydrobiol 129(3):339–351

    Google Scholar 

  • Carlyle GC, Hill AR (2001) Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. J Hydrol 247(3–4):151–168

    Article  Google Scholar 

  • Chuang SH, Ouyang CF, Wang YB (1996) Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition. Water Res 30(12):2961–2968

    Article  Google Scholar 

  • Corder GW, Foreman DL (2009) Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  Google Scholar 

  • DZT (1993) Collection and preservation methods of water samples for groundwater test (in Chinese). DZT 0064.2-1993, Ministry of Land and Resources of China, Beijing, pp 1–10

  • Gjettermann B, Styczen M, Hansen S, Borggaard OK, Hansen HCB (2007) Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil. J Environ Qual 36(3):753–763

    Article  Google Scholar 

  • Heathwaite AL, Dils RM, Liu S, Carvalho L, Brazier RE, Pope L, Hughes M, Phillips G, May L (2005) A tiered risk-based approach for predicting diffuse and point source phosphorus losses in agricultural areas. Sci Total Environ 344(1–3):225–239

    Google Scholar 

  • Holman IP, Whelan MJ, Howden NJK, Bellamy PH, Willby NJ, Rivas-Casado M, McConvey P (2008) Phosphorus in groundwater: an overlooked contributor to eutrophication? Hydrol Process 22(26):5121–5127

    Article  Google Scholar 

  • Holman IP, Howden NJK, Bellamy PH, Willby NJ, Whelan MJ, Rivas-Casado M (2010) An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Sci Total Environ 408(8):1847–1857

    Article  Google Scholar 

  • Jalali M (2009) Phosphorous concentration, solubility and species in the groundwater in a semi-arid basin, southern Malayer, western Iran. Environ Geol 57(5):1011–1020

    Article  Google Scholar 

  • Jin X, Xu Q, Huang C (2005) Current status and future tendency of lake eutrophication in China. Sci China C Life Sci 48(12):948–954

    Google Scholar 

  • Jin X, Wang S, Pang Y, Wu F (2006) Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ Pollut 139(2):288–295

    Article  Google Scholar 

  • Kamaya Y, Takada T, Suzuki K (2004) Effect of medium phosphate levels on the sensitivity of Selenastrum capricornutum to chemicals. Bull Environ Contam Toxicol 73(6):995–1000

    Article  Google Scholar 

  • Kim LH, Choi E, Stenstrom MK (2003) Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50(1):53–61

    Article  Google Scholar 

  • Kim LH, Choi E, Gil KI, Stenstrom MK (2004) Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea. Sci Total Environ 321(1–3):115–125

    Google Scholar 

  • Kim G, Ryu JW, Hwang DW (2008) Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Mar Chem 109(3–4):307–317

    Article  Google Scholar 

  • Kulabako NR, Nalubega M, Thunvik R (2008) Phosphorus transport in shallow groundwater in peri-urban Kampala, Uganda: results from field and laboratory measurements. Environ Geol 53(7):1535–1551

    Article  Google Scholar 

  • Lee YW, Hwang DW, Kim G, Lee WC, Oh HT (2009) Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci Total Environ 407(9):3181–3188

    Article  Google Scholar 

  • Liu GS (1996) Soil physical, chemical analysis and description of soil profiles (in Chinese). Standards Press of China, Beijing, pp 33–37

  • Macrae ML, Redding TE, Creed IF, Bell WR, Devito KJ (2005) Soil, surface water and ground water phosphorus relationships in a partially harvested Boreal Plain aspen catchment. For Ecol Manage 206(1–3):315–329

    Article  Google Scholar 

  • McDowell R, Sharpley A, Brookes P, Poulton P (2001) Relationship between soil test phosphorus and phosphorus release to solution. Soil Sci 166(2):137–149

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401–428

    Article  Google Scholar 

  • Oenema O, van Liere L, Schoumans O (2005) Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. J Hydrol 304(1–4):289–301

    Article  Google Scholar 

  • Qian JZ, Zhao WD, Hong TQ, Liu Y, Tang CY (2007) Spatial variability in hydrochemistry of groundwater and surface water: a case study in Nanfei River catchment, China. In: Bullen DT, Wang Y (eds) Water–rock interaction, vols 1 and 2, proceedings. Taylor and Francis, London, pp887–890

  • Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev 76(1):27–64

    Article  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Longman, Harlow, UK; Wiley, New York

    Google Scholar 

  • Roy WR, Hassett JJ, Griffin RA (1986) Competitive coefficients for the adsorption of arsenate, molybdate, and phosphate mixtures by soils. Soil Sci Soc Am J 50(5):1176–1182

    Article  Google Scholar 

  • Sawhney BL (1978) Leaching of phosphorus from agricultural soils to groundwater. Water Air Soil Pollut 9(4):499–505

    Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  Google Scholar 

  • Sims JT, Simard RR, Joern BC (1998) Phosphorus loss in agricultural drainage: historical perspective and current research. J Environ Qual 27:277–293

    Article  Google Scholar 

  • Smolders AJP, Nijboer RC, Roelofs JGM (1995) Prevention of sulphide accumulation and phosphate mobilization by the addition of iron (II) chloride to a reduced sediment: an enclosure experiment. Freshw Biol 34(3):559–568

    Article  Google Scholar 

  • Wei F (2003) Method of Analyzing and Monitoring the Water and Wastewater, 4th edn., State Environmental Protection Administration of China. China Environmental Science Press. Beijing, pp 276–280

    Google Scholar 

  • Withers PJA, Haygarth PM (2007) Agriculture, phosphorus and eutrophication: a European perspective. Soil Use Manage 23:1–4

    Article  Google Scholar 

  • Xia Q (2007) Hydrochemical Characteristics and Experimental Study of Nitrate Removal in New Lakeshore District of Hefei City. MSc Thesis, Hefei University of Technology, China, pp 1–72

    Google Scholar 

  • Xu J, Yin K, He L, Yuan X, Ho AYT, Harrison PJ (2008) Phosphorus limitation in the northern South China Sea during late summer: influence of the Pearl River. Deep-Sea Res 55(10):1330–1342

    Article  Google Scholar 

  • Zhu GW, Qin BQ, Zhang L, Luo LC (2006) Geochemical forms of phosphorus in sediments of three large, shallow lakes of China. Pedosphere 16(6):726–734

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by The Funds for Creative Research Groups of Hefei University of Technology (No. 2009HGCX0233), National Natural Science Foundation of China (No. 40872166) and National “Water Special” Program of China (No. 2008ZX07103-003-01). We thank the reviewers and the editor for their constructive comments which helped us improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Wang, L., Zhan, H. et al. Urban land-use effects on groundwater phosphate distribution in a shallow aquifer, Nanfei River basin, China. Hydrogeol J 19, 1431–1442 (2011). https://doi.org/10.1007/s10040-011-0770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0770-x

Keywords

Navigation