Skip to main content
Log in

Using three-dimensional geological mapping methods to inform sustainable groundwater development in a volcanic landscape, Victoria, Australia

Utilisation de méthodes de cartographie géologique tridimensionnelle pour assurer une exploitation pérenne d’eau souterraine dans un environnement volcanique, Victoria, Australie

Uso de los métodos de mapeo geológico tridimensionales para informar el desarrollo sustentable del agua subterránea en un paisaje volcánico, Victoria, Australia

运用三维地质填图方法研究澳大利亚维多利亚市火山岩地区的地下水可持续发展

Utilização de métodos de mapeamento geológico tri-dimensional para informar sobre o desenvolvimento sustentável da água subterrânea numa paisagem vulcânica, Vitória, Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study investigated the use of three-dimensional (3D) geological methods to provide better groundwater resource estimates for the Spring Hill area in central Victoria, Australia. Geological data were gathered in 3D geological software, which was utilised to derive fundamental dimensional parameters of the groundwater system in the study area. Mining industry software and hydrogeological methods were combined to give volumetric determinations of the basalt aquifer that were used to improve estimates of the groundwater resource. The methods reduce uncertainty about the physical attributes of the aquifer systems and greatly improve conceptual understanding of their behaviour. A simple numerical water-balance model was developed to refine the estimates of aquifer volume and fluxes to approximate observed water-level behaviour in the area. This enabled a much better comparison of groundwater resource use to the natural inputs and outputs for the area. A key conclusion was that the main issues for sustainable development and use in the study area are more to do with the physical aspects of the aquifer system, rather than simply the volume of water pumped. Visualisations of the area’s hydrogeology also provide improved hydrogeological understanding and communication for groundwater users and administrators.

Résumé

Cette étude examine l’utilisation de méthodes géologiques tridimensionnelles (3D) pour fournir de meilleures estimations des ressources en eau souterraine du secteur de Spring Hill, région centrale de Victoria, Australie. Les données géologiques réunies sur logiciel 3D ont été utilisées pour trouver les paramètres géométriques fondamentaux du système aquifère dans le secteur étudié. Un logiciel de l’industrie minière et des méthodes hydrogéologiques ont été utilisés pour connaître les dimensions de l’aquifère basaltique, et pour améliorer les estimations de la ressource en eau. Les méthodes réduisent l’incertitude sur les caractéristiques physiques des systèmes aquifères et améliorent grandement la compréhension conceptuelle de leur fonctionnement. Un bilan d’eau simple a été établi pour affiner les estimations du volume de l’aquifère et des flux, et les comparer aux variations du niveau d’eau dans le secteur. Ceci a rendu possible une bien meilleure comparaison des prélèvements avec la recharge et les avec les émergences du secteur. Une conclusion clef est que les principales questions posées pour le développement durable et l’utilisation de l’eau dans le secteur étudié sont plus dépendantes des caractéristiques physiques du système aquifère que du simple volume d’eau pompée. Les représentations de l’hydrogéologie du secteur aident aussi à une meilleure compréhension de l’information hydrogéologique par les utilisateurs de l’eau et par les gestionnaires.

Resumen

Este estudio investigó el uso de métodos geológicos trimensionales (3D) para proveer una mejor estimación de los recursos de agua subterránea para el área de Spring Hill en Victoria central, Australia. Los datos geológicos fueron reunidos en un software geológico 3D, el cual fue utilizado para deducir los parámetros dimensionales del sistema de agua subterránea en el área de estudio. Se combinaron software para la industria minera y métodos hidrogeológicos para lograr determinaciones volumétricas del acuífero basáltico que fueron usadas para mejorar la estimación del recurso de agua subterránea. Los métodos reducen la incerteza respecto a las propiedades físicas de los sistemas acuíferos y mejora grandemente el entendimiento conceptual de su comportamiento. Se desarrolló un simple modelo numérico de balance de agua para refinar las estimaciones de los volúmenes y los flujos del acuífero para aproximar el comportamiento de los niveles de agua observados en el área. Esto permitió una comparación mucho mejor del uso del recurso de agua subterránea respecto de la entrada y salida natural en el área. Una conclusión clave fue que los principales temas para el desarrollo sustentable y uso en el área de estudio tienen más que ver con los aspectos físicos del sistema acuífero, que con simplemente el volumen de agua bombeada. La visualización de la hidrogeología del área también provee mejorar el conocimiento hidrogeológico y la comunicación para usuarios y administradores del agua.

摘要

本次研究调查三维地质填图方法的应用对澳大利亚维多利亚市中心Spring Hill区提供了更好的地下水资源评价。地质资料集合于3D地质软件中,用于获得本次研究中的地下水系统的基本维度参数。采矿工业软件和水文地质方法联合使用获取玄武岩含水层的容积测定,用于提高地下水资源的评价。该方法减少了含水层系统物理属性的不确定性,并且大大的提高了其性能的概念理解。对一个简单的数值水均衡模型进行改进,完善了含水层体积的估算以及通量观测用以逼近区域水位变化。这使得该地区地下水资源利用与自然的输入与输出有了更好的比较。关键结论是研究区可持续开发利用的主要问题是更多的含水层系统的物理性质,而非简单的抽水量。可视化的区域水文地质学为地下水用户和管理者提供了更好的水文地质认识和交流。

Resumo

No presente estudo foi investigada a utilização de métodos geológicos tri-dimensionais (3D) para se obterem estimativas melhoradas dos recursos hídricos subterrâneos na área de Spring Hill, em Vitória central, Austrália. Foi compilada informação geológica em software de geologia 3D que, por sua vez, foi usada para se obterem parâmetros dimensionais fundamentais do sistema aquífero na área de estudo. Combinou-se software da indústria mineira com métodos hidrogeológicos para se obterem determinações volumétricas do aquífero basáltico, que foram usadas para melhorar as estimativas dos recursos hídricos subterrâneos. Os métodos reduzem as incertezas acerca das características físicas dos sistemas aquíferos e aumentam visivelmente o entendimento conceptual do seu funcionamento. Um balanço hídrico numérico simples foi desenvolvido para refinar as estimativas do volume do aquífero e dos fluxos, de modo a aproximar o comportamento observado aos níveis de água na área. Este processo possibilitou uma melhor comparação do uso de recursos hídricos com as entradas e saídas naturais da área. A principal conclusão foi de que os principais factores para o desenvolvimento e uso sustentáveis na área de estudo estão mais relacionados com os aspectos físicos do sistema aquífero do que simplesmente com o volume de água extraído. As visualizações da hidrogeologia da área também proporcionam uma melhoria do conhecimento hidrogeológico e da comunicação com os utilizadores e administradores de água subterrânea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alley WM (2007) Another water budget myth: the significance of recoverable groundwater in storage. Groundwater 45(3):251

    Google Scholar 

  • Alley WM, Reilly TE, Frank OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186

  • Artimo A, Makinen J, Berg RC, Abert CC, Salonen VP (2003) Three-dimensional geologic modelling and visualisation of the Virttaankangus aquifer, southwestern Finland. Hydrogeol J 11:378–386

    Article  Google Scholar 

  • Beatty B (2003) The hydrology and water chemistry of the upper Loddon catchment, Clunes, Victoria. Honours Thesis, La Trobe University, Australia

  • Berg RC, Russel HAJ, Thorleifson LH (2009) Introduction: three dimensional geologic mapping—an international perspective. Three dimensional Geologic Mapping Workshop GSA Portland Oregon. http://www.isgs.uiuc.edu/research/3DWorkshop/2009/workshop.shtml). Cited May 2011

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40(4):340–345

    Article  Google Scholar 

  • Bredehoeft JD, Durbin TJ (2009) Ground water development: the time to full capture problem. Ground water-2009. National Ground Water Association, Westerville, OH

  • Bredehoeft JD, Papadopulos SS, Cooper HH Jr (1982) The water budget myth. In: Scientific basis of water resource management: studies in geophysics. National Academy Press, Washington, DC, pp 51–57

  • Brown RH (1963) The cone of depression and the area of diversion around a discharging well in an infinite strip aquifer subject to uniform recharge. US Geol Surv Water Suppl Pap 1545c, pp C69–C85

  • DME (1983) Castlemaine and creswick deep leads maps. Bulletin No. 62, deep lead gold deposits in Victoria. Geological Survey, within the Department of Minerals and Energy, Melbourne, Australia

  • DNRE (1996) Summary report on PAV methodology, draft B. Prepared by SK Merz for the Department of Natural Resources and Environment, Melbourne, Australia

  • DNRE (1998) Permissible annual volume project for the Spring Hill GMA. Monograph series ISSN 1328–4495, Groundwater report no. 38, Prepared by SK Merz for the Department of Natural Resources and Environment, Melbourne, Australia

  • Douglas JG, Ferguson JA (eds) (1988) Geology of Victoria. Geological Society of Australia, Melbourne, 664 pp

  • DSE (2011) Victorian Water data Warehouse. Online access to Victorian surface and groundwater monitoring data. http://www.vicwaterdata.net/vicwaterdata/home.aspx. Cited May 2011

  • EPA (Environment Protection Authority) (1997) State environment protection policy: groundwaters of Victoria—beneficial use classes (salinity segments). Victorian Government Gazette, S 160, Melbourne, Australia

  • Fawcett J, Cherry D, Reid M (2006) Hydrogeological units of the Upper Loddon and Spring Hill Groundwater Management units. Department of Primary Industries, Melbourne, Australia

    Google Scholar 

  • Fetter CW (1988) Applied hydrogeology, 2nd edn. Merrill, Columbus, OH

    Google Scholar 

  • GMW (2001) Spring Hill water supply protection area management plan (groundwater). Developed by the Spring Hill water supply protection area consultative committee. Goulburn Murray Water, Tatura, Australia. http://www.g-mwater.com.au/downloads/Groundwater/Springhill_Groundwater_Mgt_Plan.pdf. Cited May 2011

  • GMW (2009) Spring Hill water supply protection area management plan (groundwater). Annual report for the year ending June 2009 Document Number 2696001. Goulburn Murray Water, Tatura, Australia. http://www.g-mwater.com.au/downloads/Annual_Reports/Groundwater_Annual_Reports/2009/2009_Springhill_Groundwater_Annual_Report.pdf. Cited May 2011

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(1):91–109

    Article  Google Scholar 

  • Holdgate GR, Wallace MW, Gallagher SJ, Witten RB, Stats B, Wagstaff BE (2006) Cenozoic fault control on ‘deep lead’ palaeoriver systems, Central Highlands, Victoria. Aust J Earth Sci 53:445–468

    Article  Google Scholar 

  • Hunter S (1909) The deep leads of Victoria. Memoirs of the Geological Survey of Victoria, no. 7. Department of Mines, Melbourne, Australia

  • Ife D (1979) Groundwater manual: an introduction to practical hydrogeology. State Rivers and Water Supply Commission of Victoria, Melbourne, Australia

  • Kalf FRP, Woolley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13(1):295–312

    Article  Google Scholar 

  • Kessler H, Mathers S, Sobisch H-G (2010) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Comput Geosci 35:1311–1321

    Google Scholar 

  • Kiem AS, Verdon-Kidd DC (2010) Towards understanding hydroclimatic change in Victoria, Australia – Preliminary insights into the “Big Dry”. Hydrology and Earth Systems Sciences 14, European Geosciences Union, Munich, Germany, pp 433–445

  • LCC (1980) Report on the Ballarat area. Land Conservation Council, Melbourne, Australia

    Google Scholar 

  • MacCormack KE, Maclachlan JC, Eyles CH (2005) Viewing the subsurface in three dimensions: initial results of modelling the Quaternary sedimentary infill of the Dundas Valley, Hamilton, Ontario. Geosphere 1(1):23–31

    Google Scholar 

  • Maimone M (2004) Defining and managing sustainable yield. Ground Water 42(6):809–814

    Article  Google Scholar 

  • McKay ED (2011) Illinois State geological Survey (29011) Three-dimensional geological mapping for groundwater applications workshops. http://www.isgs.uiuc.edu/research/3DWorkshop/index.shtml. Cited May 2011

  • Moghaddam AA, Fijani E (2009) Hydrogeologic framework of the Maku area basalts, northwestern Iran. Hydrogeol J 17:949–959

    Article  Google Scholar 

  • Nury SN, Zhu X, Cartwright I, Ailleres L (2010) Aquifer visualization for sustainable water management. Manage Environ Qual 21(2):253–274

    Google Scholar 

  • NWC (2006) Australia’s water supply status and seasonal outlook. National Water Commission (NWC), Canberra, Australia, 17 pp

    Google Scholar 

  • Reid MA, Cherry D (2004) Geological base plans for the audit of permissible annual volumes for 35 groundwater management areas in Victoria (this document). CD-ROM. Primary Industries Research Victoria, Bendigo, Australia

  • Robins NS, Rutter HK, Dumpleton S, Peach DW (2004) The role of 3D visualisation as an analytical tool preparatory to numerical modelling. J Hydrol 301:287–295

    Article  Google Scholar 

  • Ross M, Parent M, Lefebvre R (2005) 3D geological framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeol J 13:690–707

    Article  Google Scholar 

  • Saha D, Agrawal AK (2006) Determination of specific yield using a water balance approach: a case study of Torla Odha watershed in the Deccan Trap province, Maharastra State, India. Hydrogeol J 14:625–635

    Article  Google Scholar 

  • SILO (2009) NRM enhanced meteorological data sets, developed by a consortium of national and state government agencies under the under the Climate Variability in Agriculture R&D program (CVAP). http://www.longpaddock.qld.gov.au/silo/. Cited May 2011

  • Sophocleous M (1997) Managing water resource systems: why “safe yield” is not sustainable. Ground Water 35(4):561

    Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43

    Article  Google Scholar 

  • Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Eng 10:277–280

    Google Scholar 

  • Tickell SJ, Humphrys WG (1986) Groundwater resources and associated salinity problems of the Victorian part of the Riverine Plain. Report no. 84, Dept. of Industry, Technology and Resources, Melbourne, Australia

  • Turner AK [Editor] (1991) Three-dimensional modelling with geoscientific information systems, NATO ASI series C: mathematical and physical sciences, vol 354, Kluwer, Dordrecht, The Netherlands, 443 pp

  • Wycisk P, Hubert T, Gossel W, Neumann Ch (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Comput Geosci 35:165–182

    Article  Google Scholar 

Download references

Acknowledgements

This study was made possible by the funding made available from the Australian Government via the National Water Commission as well as the Victorian Government through the Victorian Water Trust. Thanks are also extended to Dr P. Dahlhaus of Ballarat University and Dr J. Webb of La Trobe University for their constructive criticisms of earlier drafts of the paper. We are also grateful for the experienced and considered comments of reviewers G. D. Lecain and M. Ross that led to significant improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Gill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, B., Cherry, D., Adelana, M. et al. Using three-dimensional geological mapping methods to inform sustainable groundwater development in a volcanic landscape, Victoria, Australia. Hydrogeol J 19, 1349–1365 (2011). https://doi.org/10.1007/s10040-011-0757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0757-7

Keywords

Navigation