Hydrogeology Journal

, Volume 19, Issue 6, pp 1203–1224

Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA

  • Matthew K. Landon
  • Christopher T. Green
  • Kenneth Belitz
  • Michael J. Singleton
  • Bradley K. Esser
Report

Abstract

In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3–N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.

Keywords

Groundwater monitoring Hydrochemistry Groundwater protection Nitrate USA 

Relation entre facteurs hydrogéologiques, conditions d’oxydo-réduction de nappe et distribution temporelle et spatiale des nitrates, Centre-Est, de la San Joaquin Valley, Californie, USA

Résumé

Sur une surface de 2,700 km2 à l’Est de la San Joaquin Valley, Californie (USA), des données de sources multiples ont été utilisées pour déterminer les interrelations entre facteurs hydrogéologiques, conditions redox et distribution temporelle et spatiale du nitrate (NO3), un polluant de nappe fréquemment détecté. L’eau de nappe est principalement moderne, ou est un mélange d’eau moderne avec (NO3) détectable en milieu oxydant, mais quelques zones présentent des conditions redox anoxiques ou mixtes. Les conditions anoxiques sont associées à des temps de séjour long qui se rencontrent près de la dépression de la vallée et dans des secteurs de décharge historique de nappe de surface. Les conditions anoxiques sont aussi associées à des interactions entre nappe moderne superficielle et sols. Les concentrations en NO3 sont sensiblement plus faibles dans les eaux anoxiques que dans les eaux oxydantes ou mixtes, principalement parce que les temps de séjour des eaux anoxiques dépassent la durée croissante de pompage et en raison de l’utilisation des fertilisants associés à l’agriculture moderne. Les effets des réactions réductrices sur la concentration en NO3 sont relativement mineurs. Les données sur le gaz N2 dissous indiquent que la dénitrification a éliminé >5 mg/L NO3-N dans environ 10% de 39 puits. L’augmentation des concentrations NO3 dans le temps prévaut légèrement moins en nappe anoxique qu’en nappe à redox oxydant ou mixte. Les tendances spatiales et temporelles de NO3 dans le temps sont principalement contrôlées par l’eau et par les flux NO3 des pratiques culturales modernes.

Relaciones de factores hidrogeológicas, condiciones de oxidación-reducción del agua subterránea, y distribuciones espacial y temporal de nitrato, Valle Centro-Oriental de San Joaquín, California, EEUU

Resumen

Se utilizaron datos de fuentes múltiples en un área de 2,700-km2 en el este del Valle San Joaquin, California (EEUU), para determinar las interrelaciones entre factores hidrogeológicos, condiciones de oxidación – reducción (redox), y las distribuciones especial y temporal de nitrato (NO3), un contaminante del agua subterránea ampliamente detectado. El agua subterránea es predominantemente moderna, o mezclas de agua moderna, con NO3 detectable y condiciones redox óxicas, pero algunas zonas tienen condiciones redox mixtas o anóxicas. Las condiciones anóxicas fueron asociadas con largos tiempos de residencia que ocurrieron cerca del canal del valle y en áreas de descarga histórica de agua subterránea con escasa profundidad del agua. Las condiciones anóxicas también fueron asociadas con interacciones de agua subterránea moderna, somera con los suelos. Las concentraciones de NO3 fueron significativamente menores en agua subterránea anóxica que en agua subterránea óxicas o de redox mixtas, primariamente debido a que los tiempos de residencia de las aguas anóxicas excedieron la duración del bombeo y el uso de fertilizantes asociados a la agricultura moderna. Los efectos de las reacciones redox sobre las concentraciones de NO3 fueron relativamente menores. Los datos del gas N2 disuelto indicaron que la desnitrificación ha eliminado >5 mg/L NO3-N en alrededor del 10% de los 39 pozos. Las concentraciones crecientes de NO3 con el tiempo fueron levemente menos prevalentes en el agua subterránea anóxica que en óxica o de redox mixta. Las tendencias espaciales y temporales de NO3 son primariamente controladas por flujos de agua y NO3 del uso moderno de la tierra.

美国加州东区中部 San Joaquin河谷水文地质条件、地下水氧化还原条件与硝酸盐时空分布的关系

摘要

摘要 : 在位于美国加州的San Joaquin河谷东部一个面积达2700 km 2的区域内, 用多种方法获取数据, 以查明水文地质条件、氧化还原条件与硝酸盐-一种分布较广的地下水污染物-的时空分布之间的关系。地下水主要是由现代水或混入现代水的水源补给, 处于氧化条件下并含有硝酸盐, 但也存在一些缺氧或混合氧化还原环境。还原环境中的地下水一般驻留时间较长, 且位于河谷槽以及浅埋深的古地下水排泄区附近。还原条件还和浅层现代地下水与土壤的相互作用有关。还原环境中地下水的硝酸盐含量明显低于混合有氧化环境的地下水, 主要是因为还原环境中的地下水驻留时间超过了与现代农业相关的开采量增加与施肥活动。氧化还原反应对硝酸盐浓度的影响非常小。溶解 N2数据表明, 39口井的10%经反硝化反应消耗了大于5 mg/L NO3-N 。还原环境中地下水NO3浓度随时间增加的普遍性不如氧化环境或混合氧化还原环境中的地下水。NO3的时空分布主要是由现代土地利用造成的水和NO3通量所控制。

Relações dos factores hidrogeológicos, das condições redução-oxidação das águas subterrâneas e das distribuições espacial e temporal da variável nitrato na área Centro-Este do Vale de SanJoaquin, Califórnia, EUA

Resumo

Numa área de 2,700 km2 localizada a leste do Vale de San Joaquin, na Califórnia (EUA), foram utilizados dados provenientes de múltiplas fontes para determinar as relações entre os factores hidrogeológicos, condições de oxidação-redução (redox) e distribuições espacial e temporal de nitrato (NO3), um contaminante comum nas águas subterrâneas. As águas subterrâneas são predominantemente de origem recente ou resultantes da mistura de águas recentes onde foram detectadas concentrações de NO3 e condições não anóxicas, embora em algumas áreas tenham sido identificadas condições anóxicas ou de características mistas. As condições anóxicas estão associadas a tempos de residência longos que ocorrem perto do vale e em áreas históricas de descarga em aquíferos superficiais. As mesmas condições anóxicas estão também associadas com interacções das águas subterrâneas superficiais recentes com solos. As concentrações de NO3 são significativamente mais baixas em águas com propriedades anóxicas do que em condições não anóxicas ou mistas, porque os seus tempos de residência excedem o tempo de duração de bombagem intensiva e de uso de fertilizantes na agricultura moderna. Os efeitos de reacções redox sobre as concentrações de NO3 são relativamente pouco significativos. A presença de gás N2 dissolvido indica que os processos de desnitrificação eliminaram as concentrações de nitratos acima dos 5 mg/LNO3-N em aproximadamente 10% do total de 39 poços. O aumento das concentrações de NO3 ao longo do tempo foi um pouco menos frequente em condições anóxicas do que em condições não anóxicas ou mistas. As tendências espacial e temporal do NO3 são principalmente controladas pela água e pelos fluxos de NO3 resultante do uso do solo.

Supplementary material

10040_2011_750_MOESM1_ESM.pdf (24 kb)
ESM Fig. 1(PDF 24 kb)
10040_2011_750_MOESM2_ESM.pdf (22 kb)
ESM Fig. 2(PDF 22 kb)
10040_2011_750_MOESM3_ESM.xlsx (204 kb)
ESM Table 1(XLSX 204 kb)
10040_2011_750_MOESM4_ESM.pdf (17 kb)
ESM Table 2(PDF 16 kb)

References

  1. Alexander RB, Smith RA (1990) County level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985. US Geol Surv Open-File Rep 90-130Google Scholar
  2. Appelo CAJ, Postma D (1999) Geochemistry, groundwater, and pollution. Balkema, Rotterdam, the NetherlandsGoogle Scholar
  3. Baedecker MJ, Back W (1979) Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J Hydrol 43:393–414CrossRefGoogle Scholar
  4. Bayer R, Schlosser P, Bonisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He in growth method. In: Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse, Jahrgang, vol 5, Springer, Heidelberg, Germany, pp, 241–279Google Scholar
  5. Belitz K, Dubrovsky NM, Burow K, Jurgens B, Johnson T (2003) Framework for a ground-water quality monitoring and assessment program for California. US Geol Surv Water Resour Invest Rep 03–4166Google Scholar
  6. Beller HR, Madrid V, Hudson GB, McNab WW, Carlsen T (2004) Biogeochemistry and natural attenuation of nitrate in groundwater at an explosives test facility. Appl Geochem 19:1483–1494CrossRefGoogle Scholar
  7. Bennett GL, Belitz K, Milby-Dawson BJ (2006) California GAMA Program: ground-water quality data in the northern San Joaquin basin study unit, 2005. US Geol Surv Data Series 196Google Scholar
  8. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365Google Scholar
  9. Bertoldi GL, Johnston RH, Evenson KD (1991) Ground-water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-AGoogle Scholar
  10. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Tech 34(10):2042–2050CrossRefGoogle Scholar
  11. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179CrossRefGoogle Scholar
  12. Böhlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res 38(7):1105. doi:10.1029/2001WR000663 CrossRefGoogle Scholar
  13. Böhlke JK, O’Connell ME, Prestegaard KL (2007) Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions. J Environ Qual 36(3):664–680. doi:10.2134/jeq2006.0084 CrossRefGoogle Scholar
  14. Burow KR, Shelton JL, Dubrovsky NM (1998a) Occurrence of nitrate and pesticides in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993–1995. US Geol Surv Water Resour Invest Rep 97–4284Google Scholar
  15. Burow KR, Stork SV, Dubrovsky NM (1998b) Nitrate and pesticides in ground water in the eastern San Joaquin Valley, California: occurrence and trends. US Geol Surv Water Resour Invest Rep 98-4040AGoogle Scholar
  16. Burow KR, Shelton JL, Hevesi JA, Weissmann GS (2004) Hydrogeologic characterization of the Modesto area, San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2004–5232, 54 pp. Available online at: http://pubs.usgs.gov/sir/2004/5232/. Cited 15 Aug 2005
  17. Burow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in ground water in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15:991–1007CrossRefGoogle Scholar
  18. Burow KR, Jurgens BC, Kauffman L, Daglish BA, Phillips SP, Shelton JL (2008a) Simulations of ground-water flow and particle pathline analysis in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008– 5035, 47 pp. Available online at: http://pubs.usgs.gov/sir/2008/5035/. Cited 2 June 2008
  19. Burow KR, Shelton JL, Dubrovsky NM (2008b) Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California. J Environ Qual 37(5:S249–S263Google Scholar
  20. California Department of Water Resources (2009a) Land use data for Merced County, California, 1995. CDWR, Sacramento, CA. http://www.water.ca.gov/landwateruse/lusrvymain.cfm. Cited 6 June 2009
  21. California Department of Water Resources (2009b) Land use data for San Joaquin and Stanislaus Counties, California, 1996. CDWR, Sacramento, CA. http://www.water.ca.gov/landwateruse/lusrvymain.cfm. Cited 6 June 2009
  22. California State Water Resources Control Board (2002) Nitrate/nitrite groundwater information sheet, California State Water Resources Control Board, Sacramento, CA. http://www.waterboards.ca.gov/gama/docs/nitrate_oct2002_rev3.pdf. Cited 14 November 2006
  23. Cey BD, Hudson GB, Moran JE, Scanlon BR (2008) Impact of artificial recharge on dissolved noble gases in groundwater in California. Environ Sci Tech 42:1017–1023CrossRefGoogle Scholar
  24. Champ DR, Gulens J, Jackson RE (1979) Oxidation–reduction sequences in ground water systems. Can J Earth Sci 16:12–23CrossRefGoogle Scholar
  25. Chapelle FH (2001) Groundwater microbiology and geochemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  26. Chapelle FH, McMahon PB, Dubrovsky NM, Fuji RF, Oaksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Wat Resour Res 31(2):359–371CrossRefGoogle Scholar
  27. Chapelle FH, Bradley PM, Thomas MA, McMahon PB (2009) Distinguishing iron-reducing from sulfate-reducing conditions. Ground Water 47(2):300–305CrossRefGoogle Scholar
  28. Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241CrossRefGoogle Scholar
  29. Coetsiers M, Walraevens K (2006) Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeol J 14:1556–1568CrossRefGoogle Scholar
  30. Conover WJ (1980) Practical nonparametric statistics, 2nd edn. Wiley, New YorkGoogle Scholar
  31. Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J Hydrol 191(1–4):245–265CrossRefGoogle Scholar
  32. Coyne MS (2008) Biological denitrification. In: JS Schepers, W Raun (eds) Nitrogen in agricultural systems, Aeron Monogr 49, Am Soc of Agron/Crop Sci Soc of Am/Soil Sci Soc of Am, Madison, WI, pp 201–253Google Scholar
  33. Davis GH, Green JH, Olmsted FH, Brown DW (1959) Ground-water conditions and storage capacity in the San Joaquin Valley, California. US Geol Surv Water Suppl Pap 1469Google Scholar
  34. Domagalski JL, Phillips SP, Bayless ER, Zamora C, Kendall C, Wildman RA, Hering JG (2008) Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA. Hydrogeol J 16:675–690CrossRefGoogle Scholar
  35. Dubrovsky NM, Deverel SJ, Gilliom RJ (1993) Multiscale approach to regional ground-water-quality assessment: selenium in the San Joaquin Valley, California. In: Alley WM (ed) Regional ground-water quality, Reinhold, New York, pp 537–562Google Scholar
  36. Dubrovsky NM, Kratzer CR, Brown LR, Gronberg JM, Burow KR (1998) Water quality in the San Joaquin-Tulare Basins, California, 1992–95. US Geol Surv Circ 1159Google Scholar
  37. Eberts SM, Jones SA, Braun CL, Harvey GJ (2005) Long-term changes in ground water chemistry at a phytoremediation demonstration site. Ground Water 43(2):178–186CrossRefGoogle Scholar
  38. Eidem JM, Simpkins WW, Burkhart MR (1999) Geology, ground-water flow, and water quality in the Walnut Creek watershed. J Environ Qual 28:60–69CrossRefGoogle Scholar
  39. Ekwurzel B (2004) LLNL Isotope Laboratories Data Manual, Version 12. UCRL-TM-203316, Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  40. Ekwurzel B, Schlosser P, Smethie WM, Plummer LN, Busenberg E, Michel RL, Weppernig R, Stute M (1994) Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30(6):1693–1708. doi:10.1029/94WR00156 CrossRefGoogle Scholar
  41. Faunt CC (ed) (2009) Groundwater availability in the Central Valley Aquifer, California. US Geol Surv Prof Pap 1776. http://pubs.usgs.gov/pp/1766/PP_1766.pdf. Cited 1 August 2009
  42. Faunt CC, Belitz K, Hanson RT (2010) Development of a three-dimensional model of sedimentary texture in valley-fill deposits of Central Valley, California, USA. Hydrogeol J 18:625–649CrossRefGoogle Scholar
  43. Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas across the United States. J Environ Qual 37:1051–1063CrossRefGoogle Scholar
  44. Franco J, Schad S, Walsh Cady C (1994) California’s experience with a voluntary approach to reducing nitrate contamination of groundwater: the Fertilizer Research and Education Program (FREP). J Soil Water Conserv 49:76–81Google Scholar
  45. Gavrieli I, Burg A, Guttman J (2002) Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel. Hydrogeol J 10:483–494CrossRefGoogle Scholar
  46. Gilliom RJ (ed) (1989) Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California. US Geol Surv Wat Res Inv Rep 88–4186Google Scholar
  47. Great Valley Center (2005) State of the great Central Valley: assessing the region via indicators—the economy. State of the Great Central Valley Indicators Series. Great Valley Center, Modesto CA. http://www.greatvalley.org/pub_documents/2005_1_18_13_59_43_indicator_econ05_report.pdf. Cited 15 April 2009
  48. Green CT, Stonestrom DA, Bekins, BA, Akstin KC, Schulz MS (2005) Percolation and transport in a sandy soil under a natural hydraulic gradient. Water Resour Res 41:W10414, 17 pp. doi:10.1029/2005WR004061
  49. Green CT, Fisher LH, Bekins BA (2008a) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37:1073–1085CrossRefGoogle Scholar
  50. Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Kauffman LJ, Denver JM, and Johnson HM (2008b) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual (37): doi:10.2134/jeq2006.0419
  51. Green CT, Böhlke JK, Bekins BA, Phillips SP (2010) Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour Res 46:W08525. doi:10.1029/2009WR008903
  52. Gronberg JM, Dubrovsky NM, Kratzer CR, Domagalski JL, Brown LR, Burow KR (1998) Environmental setting of the San Joaquin-Tulare Basins, California. US Geol Surv Water Resour Invest Rep 97–4205Google Scholar
  53. Hansen JR, Vernstsen V, Refsgaard JC, Hansen S (2008) Field scale heterogeneity of redox conditions in till-upscaling to a catchment nitrate model. Hydrogeol J 16:1251–1266CrossRefGoogle Scholar
  54. Helsel DR, Hirsch RM (2002) Statistical methods in water resources. US Geol Surv Tech of Water Resour Invest, book 4, chapter A3. Available at: http://water.usgs.gov/pubs/twri/twri4a3/. 2 October 2008
  55. Hirsch RM, Alexander RB, Smith RA (1991) Selection of methods for the detection and estimation of trends in water quality. Water Resour Res 27:803–813CrossRefGoogle Scholar
  56. Johnson TD, Belitz K (2009) Assigning land use to supply wells for the statistical characterization of regional groundwater quality: correlating urban land use and VOC occurrence. J Hydrol 370(1–4):100–108CrossRefGoogle Scholar
  57. Jørgensen PR, Urup J, Helstrup T, Jensen MB, Eiland F, Vinther FP (2004) Transport and reduction of nitrate in clayey till underneath forest and arable land. J Contam Hydrol 73:207–226CrossRefGoogle Scholar
  58. Jurgens BC, Burow KR, Dalgish BA, Shelton JL (2008) Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008–5156, 78 pp. Available online at: http://pubs.usgs.gov/sir/2008/5156/. Cited 25 September 2008
  59. Jurgens BC, McMahon PB, Chapelle FH, Eberts SM (2009) An Excel workbook for identifying redox processes in ground water. US Geol Surv Open File Rep 2009–1004Google Scholar
  60. Jurgens BC, Fram MS, Belitz K, Burow KR, Landon MK (2010) Effects of ground-water development on uranium: Central Valley, California, USA. Ground Water 48(6):913–928CrossRefGoogle Scholar
  61. Keller CK, van der Kamp G, Gherry JA (1988) Hydrogeology of two Saskatchewan tills, I: fractures, bulk permeability, and spatial variability of downward flow. J Hydrol 101:97–121CrossRefGoogle Scholar
  62. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology, chap. 16. Elsevier, Amsterdam, pp 519–576Google Scholar
  63. Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28(6):1657–1668CrossRefGoogle Scholar
  64. Koterba MT, Wilde FD, Lapham WW (1995) Ground-water data-collection protocols and procedures for the National Water-Quality Assessment Program: collection and documentation of water-quality samples and related data. US Geol Surv Open-File Rep 95–399, 113 ppGoogle Scholar
  65. Landon MK, Belitz K (2008) Ground-water quality data in the Central Eastside San Joaquin Basin, 2006: results from the California GAMA program. US Geol Surv Data Series Rep 325Google Scholar
  66. Landon MK, Belitz K, Jurgens BC, Kulongoski JT, Johnson TD (2010) Status and understanding of groundwater quality in the Central–Eastside San Joaquin Basin, 2006: California GAMA Priority Basin project. US Geol Surv Sci Inv Rep 2009–5266Google Scholar
  67. McMahon PB (2004) Aquifer/aquitard interfaces: mixing zones that enhance biochemical reactions. Hydrogeol J 9:34–43CrossRefGoogle Scholar
  68. McMahon PB, Chapelle FH (2008) Redox processes and water quality of selected principal aquifer systems. Ground Water 46(2):259–271. doi:10.1111/j.1745-6584.2007.00385.x CrossRefGoogle Scholar
  69. McMahon PB, Böhlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19(11):1655–1686. doi:10.1016/j.apgeochem.2004.05.003 CrossRefGoogle Scholar
  70. McMahon PB, Böhlke JK, Kauffman LJ, Kipp KL, Landon MK, Crandall CA, Burow KR, Brown CJ (2008) Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resour Res 44:W04401. doi:10.1029/2007WR006252
  71. Mendenhall WC, Dole RB, Stabler H (1916) Groundwater in the San Joaquin Valley. US Geol Surv Water Suppl Pap 398Google Scholar
  72. Mendizabal I, Stuyfzand PJ, and Wiersma AP (2010) Hydrochemical system analysis of public supply well fields, to reveal water-quality patterns and define groundwater bodies: the Netherlands. Hydrogeol J 19(1):83–100. doi:10.1007/s10040-010-0614-0 Google Scholar
  73. Merz C, Steidl J, Dannowski R (2009) Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems. Environ Geol 58:1587–1599CrossRefGoogle Scholar
  74. Moore KB, Ekwurzel B, Esser BK, Hudson GB, Moran JE (2006) Sources of groundwater nitrate revealed using residence time and isotope methods. Appl Geochem 21(6):1016–1029CrossRefGoogle Scholar
  75. Nakagaki N, Price CV, Falcone JA, Hitt KJ, Ruddy BC (2007) Enhanced national land cover data 1992 (NLCDe 92). US Geol Surv Raster digital data, US Geological Survey, Reston, VA. Available at: http://water.usgs.gov/lookup/getspatial?nlcde92. 29 July 2010
  76. Nightingale HI, Bianchi WC (1974) Ground-water quality related to irrigation with imported surface or local ground water. J Environ Qual 3:356–361CrossRefGoogle Scholar
  77. Otero N, Torrento C, Soler A, Mencio A, Mas-Pla J (2009) Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic (Osana, Spain). Agric Ecosys Environ 133:103–113CrossRefGoogle Scholar
  78. Pabich WJ, Valiela I, Hemond HF (2001) Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, U.S.A. Biogeochemistry 55:247–268CrossRefGoogle Scholar
  79. Page RW (1986) Geology of the fresh ground-water basin of the Central Valley, California, with texture maps and sections. US Geol Surv Prof Pap 1401-CGoogle Scholar
  80. Page RW, Balding GO (1973) Geology and quality of water in the Modesto-Merced area, San Joaquin Valley, California. US Geol Surv Water Resour Invest Rep 73–6Google Scholar
  81. Paschke SS (ed) (2007) Hydrogeologic settings and ground-water flow simulations for regional studies of the transport of anthropogenic and natural contaminants to public-supply wells: studies begun in 2001. US Geol Surv Prof Pap 1737-AGoogle Scholar
  82. Phillips SP, Green CT, Burow KR, Shelton JL, Rewis DL (2007) Simulation of multiscale ground-water flow in part of the northeastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2007–5009Google Scholar
  83. Promma K, Zheng C, Asnachinda P (2007) Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly. Hydrogeol J 15:495–513CrossRefGoogle Scholar
  84. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232CrossRefGoogle Scholar
  85. Rodvang SJ, Simpkins WW (2001) Agricultural contaminants in Quaternary aquitards: a review of occurrence and fate in North America. Hydrogeol J 9:44–59CrossRefGoogle Scholar
  86. Rose S, Long A (1988) Dissolved oxygen systematic in the Tucson Basin Aquifer. Wat Resour Res 24:127–136CrossRefGoogle Scholar
  87. Rosen MR, Lapham WW (2008) Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of ground-water quality trends and comparison to other national programs. J Environ Qual 37(5):S190–S198. doi:10.2134/jeq2008.004
  88. Ruddy BC, Lorenz DL, Mueller DK (2006) County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. US Geol Surv Sci Invest Rep 2006-5012Google Scholar
  89. Rupert MG (2008) Decadal-scale changes of nitrate in ground water of the United States, 1988–2004. J Environ Qual 37(5):240–S248. doi:10.2134/jeq2007.0055 Google Scholar
  90. Schlosser P, Stute M, Dorr C, Sonntag C, Munnich KO (1988) Tritium/3He-dating of shallow groundwater. Earth Planet Sci Lett 89:353–362CrossRefGoogle Scholar
  91. Schlosser P, Stute M, Sonntag C, Munnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–256CrossRefGoogle Scholar
  92. Schmidt KD (1987) Effect of irrigation on groundwater quality in California. J Irrig Drain Eng 113:16–29CrossRefGoogle Scholar
  93. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090. doi:10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 CrossRefGoogle Scholar
  94. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  95. Singleton MJ, Hudson GB (2005) Membrane inlet mass spectrometry for measuring dissolved gases. Lawrence Livermore National Laboratory Report UCRL-TR-214564, LLNL, Livermore, CA. http://www.llnl.gov/tid/lof/documents/pdf/323792.pdf. Cited 18 December 2006
  96. Singleton MJ, Esser BK, Moran JE, Hudson GB, McNab WW, Harter T (2007) Saturated zone denitrification: potential for natural attenuation of nitrate contamination in shallow groundwater under dairy operations. Environ Sci Tech 41:759–765CrossRefGoogle Scholar
  97. Smedley PL, Kinniburgh DG (2002) A review of the source, behavior, and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRefGoogle Scholar
  98. Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater: a review. J Environ Qual 22:392–402CrossRefGoogle Scholar
  99. Squillace PJ, Scott JC, Moran MJ, Nolan BT, Kolpin DW (2002) VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking in the United States. Environ Sci Technol 36:923–1930CrossRefGoogle Scholar
  100. Starr RC, Gillham RW (1993) Denitrification and organic carbon availability in two aquifers. Ground Water 31(6):934–946CrossRefGoogle Scholar
  101. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York, 1024 ppGoogle Scholar
  102. Tesoriero AJ, Saad DA, Burow KR, Frick EA, Puckett LJ, Barbash J (2007) Linking ground water age and chemistry data along flow paths: implications for trends and transformations of nutrients and pesticides. J Contam Hydrol 94:139–155CrossRefGoogle Scholar
  103. Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zhender AJB (ed) Biology of Anaerobic Microorganisms. Wiley, New York, pp 179–244Google Scholar
  104. US Census Bureau (2007) State and county quick facts, California. http://quickfacts.census.gov/qfd/states/01000.html. Cited 15 March 2007
  105. US Department of Agriculture (2007) The 2007 census of agriculture. http://www.agcensus.usda.gov/Publications/2007/ . Cited 15 July 2009
  106. US Environmental Protection Agency (2005) Factoids: drinking water and ground water statistics for 2004. EPA 816-K-05-001. US EPA, Washington, DCGoogle Scholar
  107. US Geological Survey (variously dated) National field manual for the collection of water-quality data. US Geol Surv Tech of Water-Resour Invest, book 9, chap. A1-A9. Available online at http://pubs.water.usgs.gov/twri9A. Cited 10 June 2009
  108. Veeger AI, Stone BD (1996) Using hydrogeochemical methods to evaluate complex quaternary subsurface stratigraphy, Block Island, Rhode Island, USA. Hydrogeol J 4:69–82CrossRefGoogle Scholar
  109. Ward MH, deKok T, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Drinking water nitrate and health: recent findings and research needs. Environ Health Perspect 115:1607–1614CrossRefGoogle Scholar
  110. Wersin P, Abrecht J, Hohener P (2001) Large-scale redox plume in glaciofluvial deposits due to sugar-factory wastes and wastewater at Aarberg, Switzerland. Hydrogeol J 9:282–296CrossRefGoogle Scholar
  111. Western Regional Climate Center (2007) Climatological data summaries for central California cooperative stations. WRCC, Reno, NV. http://www.wrcc.dri.edu/summary/Climsmcca.html. Cited 14 March 2007
  112. Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Pap 1401-DGoogle Scholar
  113. Wright MT, Belitz K (2010) Factors controlling the regional distribution of vanadium in groundwater. Ground Water 48:515–525CrossRefGoogle Scholar
  114. Wright MT, Belitz K, Johnson T (2004) Assessing the susceptibility to contamination of two aquifer systems used for public water supply in the Modesto and Fresno metropolitan areas, California, 2001 and 2002. US Geol Surv Sci Invest Rep 2004–5149Google Scholar
  115. Zhang YC, Slomp CP, Broers HP, Passier HF, Cappellen PV (2009) Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochem Cosmochim Acta 73:6716–6726CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Matthew K. Landon
    • 1
  • Christopher T. Green
    • 2
  • Kenneth Belitz
    • 1
  • Michael J. Singleton
    • 3
  • Bradley K. Esser
    • 3
  1. 1.US Geological SurveySan DiegoUSA
  2. 2.US Geological SurveyMenlo ParkUSA
  3. 3.Environmental Radiochemistry GroupLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations