Advertisement

Hydrogeology Journal

, 19:1189 | Cite as

The effects of geological heterogeneities and piezometric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern India

  • Jerome Perrin
  • Shakeel Ahmed
  • Daniel Hunkeler
Report

Abstract

Crystalline aquifers of semi-arid southern India represent a vital water resource for farming communities. A field study is described that characterizes the hydrodynamic functioning of intensively exploited crystalline aquifers at local scale based on detailed well monitoring during one hydrological year. The main results show large water-table fluctuations caused by monsoon recharge and pumping, high spatial variability in well discharges, and a decrease of well yields as the water table decreases. Groundwater chemistry is also spatially variable with the existence of aquifer compartments within which mixing occurs. The observed variability and compartmentalization is explained by geological heterogeneities which play a major role in controlling groundwater flow and connectivity in the aquifer. The position of the water table within the fracture network will determine the degree of connectivity between aquifer compartments and well discharge. The presented aquifer conceptual model suggests several consequences: (1) over-exploitation leads to a drop in well discharge, (2) intensive pumping may contribute to the hydraulic containment of contaminants, (3) groundwater quality is highly variable even at local scale, (4) geological discontinuities may be used to assist in the location of drinking-supply wells, (5) modeling should integrate threshold effects due to water-table fluctuations.

Keywords

Crystalline rocks Heterogeneity India Discontinuity Conceptual model 

L’impact des hétérogénéités géologiques et des fluctuations piézométriques sur l’écoulement et la chimie d’un aquifère de socle du sud de l’Inde

Résumé

Les aquifères de socle des régions semi-arides du sud de l’Inde représentent une ressource en eau vitale pour les communautés agricoles. Cette étude sur un site expérimental a pour but de caractériser le fonctionnement hydrodynamique d’un aquifère de socle fortement sollicité par les pompages sur la base d’un suivi détaillé de forages durant une année hydrologique. Les résultats principaux montrent une fluctuation importante de la nappe causée par la recharge durant la mousson et les pompages, une grande variabilité spatiale des débits des forages, et une diminution des débits concomitante de la baisse du niveau de la nappe. La chimie des eaux souterraines est également variable spatialement avec l’existence de compartiments au sein desquels un mélange d’eau opère. La variabilité et compartimentation observées s’expliquent par la présence d’hétérogénéités géologiques qui contrôlent les écoulements et la connectivité de l’aquifère. La position de la nappe au sein du réseau de fractures détermine à la fois le degré de connectivité des différents compartiments et le débit des ouvrages. Le modèle conceptuel proposé de l’aquifère semble indiquer plusieurs conséquences : (1) la surexploitation conduit à une diminution des débits pompés, (2) le pompage intensif peut contribuer au confinement hydraulique des contaminants, (3) la qualité des eaux souterraines est très variable même à l’échelle locale, (4) les discontinuités géologiques peuvent être utilisées à bon escient pour l’emplacement d’ouvrages d’alimentation en eau potable, (5) les simulations doivent intégrer les effets de seuil générés par les fluctuations de nappe.

Los efectos de las heterogeneidades geológicas y de las fluctuaciones piezométricas en el flujo y química del agua subterránea en un acuífero de roca dura en el sur de la India

Resumen

Los acuíferos cristalinos en el sur semiárido de la India representan un recurso vital de agua para las comunidades agrícolas. Se describe un estudio de campo que caracteriza el funcionamiento hidrodinámico de los acuíferos cristalinos intensivamente explotados a la escala local basado en el monitoreo detallado de pozos durante un año hidrológico. Los principales resultados muestran grandes fluctuaciones del nivel freático causadas por la recarga monzónica y el bombeo, alta variabilidad espacial en la descarga de pozos, y un descenso de los rendimientos de los pozos a medida que los niveles freáticos se profundizan. La química del agua subterránea también es variable espacialmente con la existencia de compartimentos acuíferos dentro de los cuales existen mezclas. La variabilidad observada y la compartimentalización se explican por las heterogeneidades geológicas que juegan un rol significativo en controlar el flujo de agua subterránea y la conectividad en el acuífero. La posición del nivel freático dentro de la red de fracturas determina el grado de conectividad entre los compartimentos acuíferos y la descarga de pozos. El presente modelo conceptual de acuífero sugiere varias consecuencias: (1) la sobreexplotación conduce a una caída en la descarga de los pozos, (2) el bombeo intensivo puede contribuir a la contención hidráulica de contaminantes, (3) la calidad del agua subterránea es altamente variable aún a escala local, (4) las discontinuidades geológicas pueden ser usadas para ayudar en la ubicación de pozos de abastecimiento de agua potable, (5) el modelado debe integrar los efectos umbral debidos a las fluctuaciones de los niveles freáticos.

印度南部坚硬岩石含水层中地质非均质性和水头波动对地下水流场及水化学的影响

摘要

印度南部半干旱地区的结晶岩含水层是农业用水的重要水源。本文通过现场踏勘,依据一个水文年内的详细观测结果,在本地尺度上描述了密集开采下结晶岩含水层的水动力响应。主要结果表明,大的水位波动主要是由季风补给、开采、井排泄的高度空间变率及水位降低引起的出水量降低所致。有混合发生的含水层单元内地下水水化学也有空间变化。地质的非均质性是控制地下水流和含水层水力联系的主要因素,据此解释了观测到的变化和含水层划分。裂隙网络中水位的高低决定着含水层间的水力联系和井排泄量的大小。提出的含水层概念模型表明:(1)过量开采地下水导致井的排泄量下降; (2)强烈开采可能导致污染物集中;(3)即使在本地尺度上,地下水质的变化也较大;(4)地质不连续面有利于确定饮用水供水井的位置;(5)模型应该考虑水位波动导致的阈值效应。

Efeitos das heterogeneidades geológicas e das flutuações piezométricas no fluxo e na química da água subterrânea num aquífero fraturado do Sul da Índia

Resumo

Os aquíferos cristalinos na região semi-árida do Sul da Índia representam um recurso de água vital para as comunidades agrícolas. Faz-se a descrição de um estudo de campo em que se caracteriza o funcionamento hidrodinâmico, à escala local, de aquíferos cristalinos intensivamente explorados, com base na monitorização detalhada de furos durante um ano hidrológico. Os principais resultados evidenciam grandes flutuações do nível piezométrico, provocadas pela recarga das monções e pela extração, elevada variabilidade espacial no caudal das captações e um decréscimo no caudal dos furos em função do rebaixamento dos níveis piezométricos. A química da água subterrânea também varia espacialmente com a existência de compartimentos no aquífero, dentro dos quais ocorre mistura. A variabilidade e compartimentação observadas são explicadas pelas heterogeneidades geológicas, as quais desempenham um papel fundamental no controlo do fluxo subterrâneo e na conectividade dentro do aquífero. A posição do nível piezométrico dentro da rede de fraturas vai determinar o grau de conetividade entre os compartimentos do aquífero e o caudal das captações. O modelo conceptual apresentado para o aquífero sugere várias consequências: (1) a sobre-exploração leva a uma diminuição na descarga das captações, (2) a bombagem intensiva pode contribuir para a contenção hidráulica de contaminantes, (3) a qualidade da água subterrânea é altamente variável, mesmo à escala local, (4) as descontinuidades geológicas podem ser utilizadas para auxiliar na localização de captações de abastecimento, (5) a modelação deve integrar os efeitos limite provocados pelas flutuações do nível piezométrico.

Notes

Acknowledgements

We are indebted to the students (J. Cachera, E. Bougon, M. Ahmad) who contributed to the collection of field data and to Mr Wajiduddin for his continuous involvement in field activities. The community of Sangapur is warmly thanked for its support and interest in this research project. We are grateful to the Editors and two anonymous reviewers for their valuable comments on the original manuscript.

References

  1. Acworth RI (1987) The development of crystalline basement aquifers in a tropical environment. Q J Eng Geol 20:265–272CrossRefGoogle Scholar
  2. Babiker M, Gudmundsson A (2004) The effects of dykes and faults on groundwater flow in an arid land: the Red Sea Hills, Sudan. J Hydrol 297:256–273CrossRefGoogle Scholar
  3. Barker RD, White CC, Houston JFT (1992) Borehole siting in an African accelerated drought relief project. Geol Soc Spec Publ 66:183–201CrossRefGoogle Scholar
  4. Briz-Kishore BH (1993) Assessment of yield characteristics of granitic aquifers in South India. Ground Water 31(6):921–928CrossRefGoogle Scholar
  5. Chandra S, Rao VA, Krishnamurthy NS, Dutta S, Ahmed S (2006) Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeol J 14:767–776CrossRefGoogle Scholar
  6. Chilton PJ, Foster SSD (1995) Hydrogeological characterization and water-supply potential of basement aquifers in tropical Africa. Hydrogeol J 3(1):36–49CrossRefGoogle Scholar
  7. Courtois N, Lachassagne P, Wyns R, Blanchin R, Bougaïré FD, Somé S, Tapsoba A (2010) Large-scale mapping of hard-rock aquifer properties applied to Burkina Faso. Ground Water 48(2):269–283. doi: 10.1111/j.1745-6584.2009.00620.x CrossRefGoogle Scholar
  8. Day-Lewis FD, Hsieh PA, Gorelick SM (2000) Identifying fracture-zone geometry using simulated annealing and hydraulic connection data. Water Resour Res 36(7):1707–1721CrossRefGoogle Scholar
  9. Day-Lewis FD, Lane JW, Harris JM, Gorelick SM (2003) Time-lapse imaging of saline tracer transport in fractured rock using difference-attenuation radar tomography. Water Resour Res 39(10):1290. doi: 10.1029/2002WR001722 CrossRefGoogle Scholar
  10. Dewandel B, Lachassagne P, Wyns R, Maréchal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by a single or multiple weathering. J Hydrol 330:260–284CrossRefGoogle Scholar
  11. Dewandel B, Perrin J, Ahmed S et al (2010) Development of a tool for managing groundwater resources in semi-arid hard rock regions: application to a rural watershed in south India. Hydrol Proc 24(19):2784–2797Google Scholar
  12. Fraenkel PL (1986) Water lifting devices. FAO Irrigation and Drainage Paper 43, FAO, RomeGoogle Scholar
  13. Gustafson G, Krásný J (1994) Crystalline rock aquifers: their occurrence, use and importance. Appl Hydrogeol 2:64–75CrossRefGoogle Scholar
  14. Henriksen H, Braathen A (2006) Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeol J 14:444–461CrossRefGoogle Scholar
  15. Howard KWF, Hughes M, Charlesworth DL, Ngobi G (1992) Hydrogeologic evaluation of fracture permeability in crystalline basement aquifers of Uganda. Appl Hydrogeol 1:55–65CrossRefGoogle Scholar
  16. Jones MJ (1985) The weathered zone aquifers of the basement complex areas of Africa. Q J Eng Geol Hydrogeol 18:35–46CrossRefGoogle Scholar
  17. Krishnamurthy J, Kumar NV, Jayaraman V, Manivel M (1996) An approach to demarcate ground water potential zones through remote sensing and geographical information system. Int J Remote Sens 17:1867–1884CrossRefGoogle Scholar
  18. Lachassagne P, Wyns R, Bérard P, Bruel T, Chéry L, Coutand T, Desprats JF, Le Strat P (2001) Exploitation of high-yield in hard-rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water 39(4):568–581CrossRefGoogle Scholar
  19. Le Borgne T, Bour O, Paillet FL, Caudal JP (2006) Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J Hydrol 328:347–359. doi: 10.1016/j.jhydrol.2005.12.029 CrossRefGoogle Scholar
  20. Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40:W11508, 17 ppGoogle Scholar
  21. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293. doi: 10.1016/j.jhydrol.2006.02.022 CrossRefGoogle Scholar
  22. Maréchal JC (2010) Editor′s message: the sunk cost fallacy of deep drilling. Hydrogeol J 18:287–289CrossRefGoogle Scholar
  23. Paillet FL, Hess AE, Cheng CH, Hardin E (1987) Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping. Ground Water 25(1):28–40CrossRefGoogle Scholar
  24. Paillet FL (1993) Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers. J Appl Geophys 30:261–279CrossRefGoogle Scholar
  25. Paillet FL (2000) A field technique for estimating aquifer parameters using flow log data. Ground Water 38(4):510–521CrossRefGoogle Scholar
  26. Perrin J, Mascré C, Massuel S et al (2009) Tank management in Andhra Pradesh, India: percolation vs. irrigation. IAHS Publication 330, IAHS, Wallingford, UK, pp 28–33Google Scholar
  27. Perrin J, Mascré C, Pauwels H, Ahmed S (2011) Solute recycling: an emerging threat to groundwater resources in southern India? J Hydrol 398:144–154. doi: 10.1016/j.jhydrol.2010.12.024 CrossRefGoogle Scholar
  28. Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS (2009) Understanding hydrological processes in a highly stressed granitic aquifer in southern India. Hydrol Process 23:1282–1294. doi: 10.1002/hyp.7236 CrossRefGoogle Scholar
  29. Rushton KR (2003) Groundwater Hydrology: conceptual and computational models. Wiley, England, 416 ppCrossRefGoogle Scholar
  30. Sander P (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15(1):71–74CrossRefGoogle Scholar
  31. Sander P, Minor TB, Chesley MM (1997) Groundwater exploration based on lineament analysis and reproducibility tests. Ground Water 35:888–894CrossRefGoogle Scholar
  32. Silliman S, Robinson R (1989) Identifying fracture interconnections between boreholes using natural temperature profiling: I. conceptual basis. Ground Water 27(3):393–402CrossRefGoogle Scholar
  33. Taylor R, Howard K (2000) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol J 8(3):279–294CrossRefGoogle Scholar
  34. Wright EP (1992) The hydrogeology of crystalline basement aquifers in Africa. Geol Soc Spec Publ 66:1–27CrossRefGoogle Scholar
  35. Wyns R, Baltassat JM, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Geol Fr 175(1):21–34CrossRefGoogle Scholar
  36. Zaidi FK, Ahmed S, Maréchal JC, Dewandel B (2007) Optimizing a piezometric network in the estimation of the groundwater budget: a case study from a crystalline-rock watershed in southern India. Hydrogeol J 15:1131–1145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.BRGM, Water Division, Resource Assessment, Discontinuous Aquifers UnitIndo-French Centre for Groundwater ResearchHyderabadIndia
  2. 2.National Geophysical Research InstituteIndo-French Centre for Groundwater ResearchHyderabadIndia
  3. 3.Centre of Hydrogeology and Geothermics (CHYN)University of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations