Hydrogeology Journal

, 19:779 | Cite as

A comparison of recharge rates in aquifers of the United States based on groundwater-age data

  • P. B. McMahon
  • L. N. Plummer
  • J. K. Böhlke
  • S. D. Shapiro
  • S. R. Hinkle
Paper

Abstract

An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from < 10 to 1,200 mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

Keywords

Groundwater age Groundwater recharge/water budget USA 

Comparaison des taux de recharge d’aquifères basée sur des données d’âge de nappe, Etats Unis

Résumé

On présente une vue d’ensemble des données disponibles sur l’âge d’une nappe et leurs implications pour évaluer les taux et temps de recharge d’aquifères libres sélectionnés, Etats Unis. Les distributions d’âge apparent dans des aquifères, déduites du dosage de carbone chloro-fluorés, hexafluorure de soufre, tritium/helium-3 et radiocarbone dans 565 puits de 45 réseaux, ont été utilisés pour calculer les taux de recharge de la nappe. Les échelles des temps de recharge ont été définies par 1,873 mesures de tritium distribuées et 102 mesures de radiocarbone sur un réseau de 27 puits. La distribution des temps de rechargea été établie par 1,873 mesures du tritium et 102 mesures du radiocarbone sur un réseau de 27 puits. Les taux de recharge s’échelonnent de moins de 10 mm/an à 1,200 mm/an dans des aquifères sélectionnés sur la base des distributions verticales d’âge mesurées et supposant des gradients d’âge exponentiels. Sur une base régionale, les taux de recharge donnés par des traceurs sur une eau de nappe jeune montrent une corrélation inverse forte avec la température annuelle moyenne de l’air et une corrélation directe forte avec la précipitation annuelle moyenne. La comparaison de la recharge déduite des âges de la nappe avec la recharge déduite du débit de base montre des caractéristiques générales similaires mais des différences locales notables. Des résultats de cette compilation démontrent que des estimations basées sur l’âge peuvent fournir des indications utiles sur la variabilité spatiale et temporelle de la recharge à une échelle nationale, et sur les facteurs contrôlant cette variabilité. Des estimations de recharge basées sur un âge local fournissent donnée empirique et information requises pour tester et améliorer des méthodes d’avantage basées sur la modélisation spatiale.

Una comparación de los ritmos de recarga en acuíferos de los Estados Unidos basados en datos de edad del agua subterránea

Resumen

Se presenta una visión general de los datos existentes de edad de agua subterránea y su implicancia para evaluar los ritmos y las escalas temporales de la recarga en sistemas acuíferos no confinados seleccionados de Estados Unidos. Se utilizaron las distribuciones de edad aparente en los acuíferos determinada a partir de medidas clorofluorocarbonos, hexafluoruro de azufre, tritio/helio-3, y medidas de radiocarbono de 565 pozos en 45 redes para calcular los ritmos de la recarga de las aguas subterráneas. Las escalas temporales de la recarga fueron definidas a través de 1,873 medidas de tritio distribuidas y 102 medidas de radiocarbono a partir de 27 redes de pozos. Los ritmos de recarga variaron de < 10 a 1,200 mm/año en los acuíferos seleccionados en base a la distribución de medidas de edades verticales y suponiendo gradientes exponenciales de edad. Sobre una base regional, el ritmo de recarga basado en trazadores de agua subterráneas jóvenes, exhibieron una correlación significativa inversa con la temperatura media anual del aire y una correlación significativa positiva con la precipitación media anual. La comparación de la recarga a partir de las edades de agua subterránea con la recarga a partir de la evaluación del flujo base de las corrientes mostraron un patrón general similar pero con diferencias locales sustanciales. Los resultados de esta compilación demuestran que las estimaciones de la recarga basada en la edad pueden proveer puntos una comprensión útil de las variabilidades espaciales y temporales en la recarga en una escala nacional y los factores que controlan esa variabilidad. Las estimaciones de la recarga basada en edades locales provee datos empíricos e información de procesamiento que son necesarios para probar y mejorar más espacialmente los métodos completos basados en modelos.

Uma comparação das taxas de recarga em aquíferos dos Estados Unidos, baseada em dados de datação da água subterrânea

Resumo

Apresenta-se uma revisão de dados de datação de água subterrânea existentes, com vista à avaliação de graus e escalas temporais de recarga numa selecção de sistemas aquíferos livres dos Estados Unidos. Para calcular as taxas de recarga de água subterrânea foram usadas distribuições de idade aparente de aquíferos, determinadas com recurso a medidas de clorofluorocarboneto, hexafluoreto de enxofre, trítio/hélio-3 e radiocarbono em 565 poços de 45 campos de captação. As escalas temporais da recarga foram definidas por 1,873 medições distribuídas de trítio e 102 medições de radiocarbono em 27 campos de captação. As taxas de recarga variaram de <10 até 1,200 mm/ano em aquíferos seleccionados com base em medidas da distribuição vertical da idade e assumindo gradientes de idade exponenciais. Numa base regional, as taxas de recarga calculadas com base em traçadores em águas subterrâneas recentes mostrou uma significativa correlação inversa com a temperatura média anual do ar e uma correlação positiva significativa com a precipitação média anual. A comparação da recarga derivada das idades da água subterrânea com a recarga avaliada a partir do escoamento fluvial de base mostrou padrões gerais similares mas também substanciais diferenças locais. Os resultados desta compilação demonstram que as estimativas de recarga baseadas na idade podem fornecer perspectivas úteis sobre a variabilidade espacial e temporal da recarga a uma escala nacional e sobre os factores que controlam essa variabilidade. As estimativas de recarga baseadas na idade local fornecem dados empíricos e informação sobre processos que são necessários para testar e melhorar os métodos baseados em modelos espacialmente mais completos.

Supplementary material

10040_2011_722_MOESM1_ESM.pdf (3 mb)
ESM(PDF 3099 kb)

References

  1. Aeschbach-Hertig W, Stute M, Clark JF, Reuter RF, Schlosser P (2002) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia aquifer (Maryland, USA). Geochim Cosmochim Acta 66:797–817CrossRefGoogle Scholar
  2. Anning DW, Thiros SA, Bexfield LM, McKinney TS, Green JM (2009) Southwest principal aquifers regional groundwater quality assessment. US Geol Surv Fact Sheet 2009–3015, 4 ppGoogle Scholar
  3. Anyah RO, Weaver CP, Miguez-Macho G, Fan Y, Robock A (2008) Incorporating water table dynamics in climate modeling: 3. simulated groundwater influence on coupled land-atmosphere variability. J Geophys Res D07103. doi:10.1029/2007JD009087
  4. Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Ann Rev Earth Plan Sci 36:121–152Google Scholar
  5. Bexfield LM, Anderholm SK (2002) Estimated water-level declines in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico, predevelopment to 2002. US Geol Surv Water-Resour Invest Rep 2002–4233, 1 sheetGoogle Scholar
  6. Bierkens MFP, van den Hurk BJJM (2007) Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. Geophys Res Lett L02402. doi:10.1029/2006GL028396
  7. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179, and an erratum in Hydrogeol J (2002) 10:438–439Google Scholar
  8. Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland. Water Resour Res 31:2319–2339CrossRefGoogle Scholar
  9. Böhlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res. doi:10.1029/2001WR000663 Google Scholar
  10. Böhlke JK, Verstraeten IM, Kraemer TF (2007a) Effects of surface-water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer. Appl Geochem 22:152–174CrossRefGoogle Scholar
  11. Böhlke JK, O’Connell ME, Prestegaard KL (2007b) Groundwater stratification and delivery of nitrate to an incised stream under varying flow conditions. J Environ Qual 36:664–680CrossRefGoogle Scholar
  12. Böhlke JK, Hatzinger PB, Sturchio NC, Gu B, Abbene I, Mroczkowski SJ (2009) Atacama perchlorate as an agricultural contaminant in groundwater: isotopic and chronologic evidence from Long Island, New York. Environ Sci Technol 43:5619–5625CrossRefGoogle Scholar
  13. Burow KR, Shelton JL, Dubrovsky NM (1998) Occurrence of nitrate and pesticides in groundwater beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993–1995. US Geol Surv Water Resour Invest Rep 97–4284, 51 ppGoogle Scholar
  14. Burow KR, Panshin SY, Dubrovsky NM, Vanbrocklin D, Fogg GE (1999) Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in groundwater in the eastern San Joaquin Valley, California: analysis of chemical data and groundwater flow and transport simulations. US Geol Surv Water Resour Invest Rep 99–4059, 57 ppGoogle Scholar
  15. Burow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15:991–1007CrossRefGoogle Scholar
  16. Burow KR, Jurgens BC, Kauffman LJ, Phillips, SP, Dalgish BA, Shelton JL (2008) Simulations of groundwater flow and particle pathline analysis in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008–5035, 41 ppGoogle Scholar
  17. Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011–3030CrossRefGoogle Scholar
  18. Charles EG, Storck DA, Clawges RM (2001) Hydrology of the unconfined aquifer system, Maurice River area: Maurice and Cohansey River basins, New Jersey, 1994–95. US Geol Surv Water-Resour Invest Rep 01–4229, 5 sheetsGoogle Scholar
  19. Clark JF, Davisson ML, Hudson GB, MacFarlane PA (1998) Nobel gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. J Hydrol 211:151–167CrossRefGoogle Scholar
  20. Coes AL, Spruill TB, Thomasson MJ (2007) Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrogeol J 15:773–788CrossRefGoogle Scholar
  21. Cook PG, Böhlke JK (2000) Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, BostonGoogle Scholar
  22. Cook PG, Solomon DK, Plummer LN, Busenberg E, Schiff SL (1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour Res 31:425–434CrossRefGoogle Scholar
  23. Cook PG, Solomon DK, Sanford WE, Busenberg E, Plummer LN, Poreda RJ (1996) Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour Res 32:1501–1509CrossRefGoogle Scholar
  24. Cox SE, Kahle SC (1999) Hydrogeology, groundwater quality, and sources of nitrate in lowland glacial aquifers of Whatcom County, Washington, and British Columbia, Canada. US Geol Surv Water Resour Invest Rep 98–4195, 251 ppGoogle Scholar
  25. Crosbie R, Jolly I, Leaney F, Petheram C, Wohling D (2010) Review of Australian Groundwater Recharge Studies. CSIRO, Clayton, Australia, 81 ppGoogle Scholar
  26. Cushing EM, Kantrowitz IH, Taylor KR (1973) Water resources of the Delmarva Peninsula. US Geol Surv Prof Pap 822, 58 ppGoogle Scholar
  27. Darling WG, Edmunds WM, Smedley PL (1997) Isotopic evidence for paleowaters in the British Isles. Appl Geochem 12:813–829CrossRefGoogle Scholar
  28. Debrewer LM, Ator SW, Denver JM (2007) Factors affecting spatial and temporal variability in nutrient and pesticide concentrations in the surficial aquifer on the Delmarva Peninsula. US Geol Surv Sci Invest Rep 2005–5257, 44 ppGoogle Scholar
  29. Delin GN, Healy RW, Landon MK, Böhlke JK (2000) Effects of topography and soil properties on recharge at two sites in an agricultural field. J Am Water Resour Assoc 36:1401–1416CrossRefGoogle Scholar
  30. Douglas AA, Osiensky JL, Keller CK (2007) Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts. J Hydrol 334:502–512CrossRefGoogle Scholar
  31. Dugan JT, Zelt RB (2000) Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951–80. US Geol Surv Water Supply Pap 2427, 81 ppGoogle Scholar
  32. Dunkle SA, Plummer LN, Busenberg E, Phillips PJ, Denver JM, Hamilton PA, Michel RL, Coplen TB (1993) Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resour Res 29:3837–3860CrossRefGoogle Scholar
  33. Eichinger L (1983) A contribution to the interpretation of 14 C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon 25:347–356Google Scholar
  34. Ekwurzel B, Schlosser P, Smethie WM, Plummer LN, Busenberg E, Michel RL, Weppernig R, Stute M (1994) Dating shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30:1693–1708CrossRefGoogle Scholar
  35. Fahlquist, L (2003) Groundwater quality of the southern High Plains aquifer, Texas and New Mexico, 2001. US Geol Surv Open File Rep 2003–345, 59 ppGoogle Scholar
  36. Faunt CC (2009) Groundwater availability of the central valley aquifer, California. US Geol Surv Prof Pap 1766, 225 ppGoogle Scholar
  37. Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas of the United States. J Environ Qual 37:1051–1063CrossRefGoogle Scholar
  38. Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413CrossRefGoogle Scholar
  39. Gannett MW, Lite KE Jr, Morgan DS, Collins CA (2001) Groundwater hydrology of the Upper Deschutes basin, Oregon. US Geol Surv Water Resour Invest Rep 00–4162, 77 ppGoogle Scholar
  40. Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23:3519–3534CrossRefGoogle Scholar
  41. Genereux DP, Hooper RP (1998) Oxygen and hydrogen isotopes in rainfall-runoff studies. In: Kendall C, McDonnell JJ (eds) Isotopes in catchment hydrology. Elsevier, AmsterdamGoogle Scholar
  42. Green CT, Fisher LH, Bekins BA (2008a) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37:1073–1085CrossRefGoogle Scholar
  43. Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Kauffman LJ, Denver JM, Johnson HM (2008b) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual 37:994–1009CrossRefGoogle Scholar
  44. Hamlin SN, Belitz K, Kraja S, Dawson B (2002) Groundwater quality in the Santa Ana watershed, California: overview and data summary. US Geol Surv Water Resour Invest Rep 02–4243, 55 ppGoogle Scholar
  45. Healy RW, Winter TC, LaBaugh JW, Franke OL (2007) Water budgets: foundations for effective water-resources and environmental management. US Geol Surv Circ 1308, 90 ppGoogle Scholar
  46. Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, New YorkGoogle Scholar
  47. Hinkle SR (1997) Quality of shallow groundwater in alluvial aquifers of the Willamette Basin, Oregon, 1993–95. US Geol Surv Water Resour Invest Rep 97–4082–B, 48 ppGoogle Scholar
  48. Hinkle SR (2009) Tritium/helium-3 apparent ages of shallow ground water, Portland Basin, Oregon, 1997–98. US Geol Surv Sci Invest Rep 2009–5057, 8 ppGoogle Scholar
  49. Hinkle SR, Böhlke JK, Duff JH, Morgan DS, Weick RJ (2007) Aquifer-scale controls on the distribution of nitrate and ammonium in groundwater near La Pine, Oregon, USA. J Hydrol 333:486–503CrossRefGoogle Scholar
  50. Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Proc Sugawara Festival on Recent Researches in the Fields of Atmospheric, Hydrosphere, and Nuclear Geochemistry, Maruzen, Tokyo, pp 263–283Google Scholar
  51. International Atomic Energy Agency (IAEA) (2006) Use of chlorofluorocarbons in hydrology: a guidebook. STI/PUB/1238, IAEA, Vienna, 277 ppGoogle Scholar
  52. Izbicki JA, Michel RL (2004) Movement and age of groundwater in the western part of the Mojave Desert, southern California, USA. US Geol Surv Water Resour Invest Rep 03–4314, 35 ppGoogle Scholar
  53. Jurgens BC, Burow KR, Dalgish BA, Shelton, JL (2008) Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008–5156, 78 ppGoogle Scholar
  54. Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, BostonGoogle Scholar
  55. Katz BG, Crandall CA, Metz PA, McBride WS, Berndt MP (2007) Chemical characteristics, water sources and pathways, and age distribution of ground water in the contributing recharge area of a public-supply well near Tampa, Florida, 2002–05. US Geol Surv Sci Invest Rep 2007–5139, 83 ppGoogle Scholar
  56. Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344CrossRefGoogle Scholar
  57. Kauffman LJ, Baehr AL, Ayers MA, Stackelberg PE (2001) Effects of land use and travel time on the distribution of nitrate in the Kirkwood-Cohansey aquifer system in southern New Jersey. US Geol Surv Water Resour Invest Rep 2001–4117, 49 ppGoogle Scholar
  58. Kennedy CD, Genereux DP (2007) 14C groundwater age and the importance of chemical fluxes across aquifer boundaries in confined Cretaceous aquifers of North Carolina, USA. Radiocarbon 49:1181–1203Google Scholar
  59. Klump S, Grundl T, Purtschert R, Kipfer R (2008) Groundwater and climate dynamics derived from noble gas, 14C, and stable isotope data. Geology 36(5):395-398. doi:10.1130/G24604A.1 Google Scholar
  60. Kolpin DW, Burkhart MR, Thurman EM (1993) Hydrogeologic, water-quality, and land-use data for the reconnaissance of herbicides and nitrate in near-surface aquifers of the Mid continental United States, 1991. US Geol Surv Open File Rep 93–114, 61 ppGoogle Scholar
  61. Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim Cosmochim Acta 69:3857–3872CrossRefGoogle Scholar
  62. Lacombe PJ, Rosman R (1995) Hydrology of the unconfined aquifer system in the upper Maurice River basin and adjacent areas in Gloucester County, New Jersey, 1986–87. US Geol Surv Water-Resour Invest Rep 92–4128, 5 sheetsGoogle Scholar
  63. Landon MK, Clark BR, McMahon PB, McGuire VL, Turco MJ (2008) Hydrogeology, chemical characteristics, and transport processes in the zone of contribution of a public-supply well in York, Nebraska. US Geol Surv Sci Invest Rep 2008–5050, 149 ppGoogle Scholar
  64. Le Gal La Salle C, Marlin C, Leduc C, Taupin JD, Massault M, Favreau G (2001) Renewal rate estimation of groundwater based on radioactive tracers (3H, 14C) in an unconfined aquifer in a semiarid area, Iullemeden Basin, Niger. J Hydrol 254:145–156CrossRefGoogle Scholar
  65. Lindsey BD, Phillips SW, Donnelly CA, Speiran GK, Plummer LN, Böhlke JK, Focazio MJ, Burton WC, Busenberg E (2003) Residence times and nitrate transport in groundwater discharging to streams in the Chesapeake Bay watershed. US Geol Surv Water Resour Invest Rep 2003–4035, 201 ppGoogle Scholar
  66. Loosli HH (1982) A dating method with 39Ar. Earth Planet Sci Lett 63:51–62CrossRefGoogle Scholar
  67. Lopes TJ, Hoffmann JP (1997) Geochemical analyses of groundwater ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona. US Geol Surv Water Resour Invest Rep 96–4190, 42 ppGoogle Scholar
  68. Ma L, Castro MC, Hall CM (2004) A late Pleistocene-Holocene noble gas paleotemperature record in southern Michigan. Geophys Res Lett. doi:10.1029/2004GL021766 Google Scholar
  69. Manning AH, Solomon DK, Thiros SA (2005) 3H/3He age data in assessing the susceptibility of wells to contamination. Ground Water 43:353–367CrossRefGoogle Scholar
  70. Maupin MA, Barber NL (2005) Estimated withdrawals from principal aquifers in the United States, 2000. US Geol Surv Circ 1279, 46 ppGoogle Scholar
  71. McGuire VL (2009) Changes in water levels and storage in the High Plains aquifer, predevelopment to 2007. US Geol Surv Fact Sheet 2009–3005, 2 ppGoogle Scholar
  72. McMahon PB, Böhlke JK (1996) Denitrification and mixing in a stream-aquifer system: effects on nitrate loading to surface water. J Hydrol 186:105–128CrossRefGoogle Scholar
  73. McMahon PB, Böhlke JK, Christenson SC (2004a) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19:1655–1686CrossRefGoogle Scholar
  74. McMahon PB, Böhlke JK, Lehman TM (2004b) Vertical gradients in water chemistry and age in the southern High Plains aquifer, Texas, 2002. US Geol Surv Sci Invest Rep 2004–5053, 53 ppGoogle Scholar
  75. McMahon PB, Böhlke JK, Carney CP (2007) Vertical gradients in water chemistry and age in the northern High Plains aquifer, Nebraska, 2003. US Geol Surv Sci Invest Rep 2006–5294, 58 ppGoogle Scholar
  76. McMahon PB, Burow KR, Kauffman LJ, Eberts SM, Böhlke JK, Gurdak JJ (2008a) Simulated response of water quality in public supply wells to land use change. Water Resour Res. doi:10.1029/2007WR006731 Google Scholar
  77. McMahon PB, Böhlke JK, Kauffman LJ, Kipp KL, Landon MK, Crandall CA, Burow KR, Brown CJ (2008b) Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resour Res. doi:10.1029/2007WR006252 Google Scholar
  78. Mook WG (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. In: Proc 8th Int Conf on Radiocarbon Dating, vol 1, Royal Society of New Zealand, Wellington, pp 342–352Google Scholar
  79. Mook WG, van der Plicht J (1999) Reporting 14C activities and concentrations. Radiocarbon 41:227–239Google Scholar
  80. Morgan DS, Hinkle SR, Weick RJ (2007) Evaluation of approaches for managing nitrate loading from on-site wastewater systems near La Pine, Oregon. US Geol Surv Sci Invest Rep 2007–5237, 66 ppGoogle Scholar
  81. Morrow WS (2003) Anthropogenic constituents in shallow ground water in the Upper Illinois River Basin. US Geol Surv Water Resour Invest Rep 02–4293, 34 ppGoogle Scholar
  82. Mullaney JR, Grady SJ (1997) Hydrogeology and water quality of a surficial aquifer underlying an urban area, Manchester, Connecticut. US Geol Surv Water Resour Invest Rep 97–4195, 40 ppGoogle Scholar
  83. Nelms DL, Harlow GE, Plummer LN, Busenberg E (2003) Aquifer susceptibility in Virginia, 1998–2000. US Geol Surv Water Res Invest Rep 2003–4278, 58 ppGoogle Scholar
  84. Nolan BT, Healy RW, Taber PE, Perkins K, Hitt KJ, Wolock DM (2007) Factors influencing groundwater recharge in the eastern United States. J Hydrol 332:187–205CrossRefGoogle Scholar
  85. Orndorff RC, Craigg S, D’Erchia T, Edwards L, Fullerton D, Murchey B, Ruppert L, Soller D, Tew B (2007) Divisions of geologic time –major chronostratigraphic and geochronologic units. US Geol Surv Fact Sheet 2007–3015, 2 ppGoogle Scholar
  86. Osenbrück K, Fiedler S, Knöller K, Weise SM, Sultenfuss J, Oster H, Strauch G (2006) Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany. Water Resour Res. doi:10.1029/2006WR004977 Google Scholar
  87. Pearson FJ, White DE (1967) Carbon 14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. Water Resour Res 3:251–261CrossRefGoogle Scholar
  88. Phillips FM, Tansey MK, Peeters LA, Cheng S, Long A (1989) An isotopic investigation of groundwater in the central San Juan basin, New Mexico: carbon 14 dating as a basis for numerical flow modeling. Water Resour Res 25:2259–2273CrossRefGoogle Scholar
  89. Plummer LN (1993) Stable isotope enrichment in paleowaters of the southeast Atlantic Coastal Plain, United States. Science 262:2016–2020CrossRefGoogle Scholar
  90. Plummer LN, Sprinkle CL (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol J 9:127–150CrossRefGoogle Scholar
  91. Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26:1981–2014CrossRefGoogle Scholar
  92. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0. US Geol Surv Water Resour Invest 94–4169, 130 ppGoogle Scholar
  93. Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179:93–111CrossRefGoogle Scholar
  94. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2003) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J 12:359–388Google Scholar
  95. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004) Geochemical characterization of groundwater flow in the Santa Fe Group aquifer system, Middle Rio Grande basin, New Mexico. US Geol Surv Water Resour Invest Rep 03–4131, 395 ppGoogle Scholar
  96. Pope DA, Clark DW, Shapiro SD, Lawlor SM (1999) Hydrogeologic, geophysical, water-quality, transient-tracer, and flow-model analysis of groundwater flow near Dillon, Montana. US Geol Surv Water Resour Invest Rep 98–4250, 75 ppGoogle Scholar
  97. Puckett LJ, Cowdery TK (2002) Transport and fate of nitrate in a glacial outwash aquifer in relation to groundwater age, land use practices, and redox processes. J Environ Qual 31:782–796CrossRefGoogle Scholar
  98. Puckett LJ, Hughes WB (2005) Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes. J Environ Qual 34:2278–2292CrossRefGoogle Scholar
  99. Puckett LJ, Cowdery TK, McMahon PB, Tornes LH, Stoner JD (2002) Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour Res. doi:10.1029/2001WR000396 Google Scholar
  100. Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour Res 30:421–433CrossRefGoogle Scholar
  101. Reilly TE, Dennehy KF, Alley WM, Cunningham WL (2008) Groundwater availability in the United States. US Geol Surv Circ 1323, 70 ppGoogle Scholar
  102. Robinson JL (2002) Groundwater quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999–2000. US Geol Surv Water Resour Invest Rep 2002–4052, 37 ppGoogle Scholar
  103. Rowe GL, Shapiro SD, Schlosser P (1999) Use of environmental tracers to evaluate groundwater age and water quality trends in a buried-valley aquifer, Dayton area, southwestern Ohio. US Geol Surv Water Resour Invest Rep 99–4113, 81 ppGoogle Scholar
  104. Rupert MG, Plummer LN (2009) Groundwater quality, age, and probability of contamination, Eagle River Watershed valley-fill aquifer, north-central Colorado, 2006–2007. US Geol Surv Sci Invest Rep 2009–5082, 59 ppGoogle Scholar
  105. Saad DA (1997) Effects of land use and geohydrology on the quality of shallow ground water in two agricultural areas in the western Lake Michigan drainages, Wisconsin. US Geol Surv Water Resour Invest Rep 96–4292, 69 ppGoogle Scholar
  106. Saad DA (2008) Agriculture related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin. J Environ Qual 37:209–225CrossRefGoogle Scholar
  107. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. calibration of a groundwater flow model. Hydrogeol J 12:389–407CrossRefGoogle Scholar
  108. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  109. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370CrossRefGoogle Scholar
  110. Schaller MF, Fan Y (2009) River basins as groundwater exporters and importers: implications for water cycle and climate modeling. J Geophys Res, D04103. doi:10.1029/2008JD010636
  111. Schlosser P, Stute M, Sonntag C, Münnich KO (1989) Tritiogenic 3He in shallow groundwater. Earth Planet Sci Lett 94:245–256CrossRefGoogle Scholar
  112. Schwarz GE, Alexander RB (1995) Soils data for the conterminous United States derived from the NRCS State Soil Geographic (STATSGO) Data Base. US Geol Surv Open-File Rep 95–449, Arc 7.0 coverageGoogle Scholar
  113. Shapiro SD, Rowe GL, Schlosser P, Ludin A, Stute M (1998) Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Water Resour Res 34:1165–1180CrossRefGoogle Scholar
  114. Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. J Hydrol 43:45–65CrossRefGoogle Scholar
  115. Snyder DT, Morgan DS, McGrath TS (1994) Estimation of groundwater recharge from precipitation, runoff into drywells, and on-site waste-disposal systems in the Portland Basin, Oregon and Washington. US Geol Surv Water Resour Invest Rep 92–4010, 34 ppGoogle Scholar
  116. Solomon DK, Cook PG (2000) 3H and 3He. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, BostonGoogle Scholar
  117. Solomon DK, Sudicky EA (1991) Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309–2319CrossRefGoogle Scholar
  118. Solomon DK, Poreda RJ, Cook PG, Hunt A (1995) Site characterization using 3 H/3He groundwater ages, Cape Cod, MA. Ground Water 33:988–996CrossRefGoogle Scholar
  119. Stackelberg PE, Kauffman LJ, Baehr AL, Ayers MA (2000) Comparison of nitrate, pesticides, and volatile organic compounds in samples from monitoring and public-supply wells, Kirkwood-Cohansey aquifer system, southern New Jersey. US Geol Surv Water Resour Invest Rep 2000–4123, 58 ppGoogle Scholar
  120. Stanton JS, Fahlquist L (2006) Groundwater quality beneath irrigated cropland of the northern and southern High Plains aquifer, Nebraska and Texas, 2003–04. US Geol Surv Sci Invest Rep 2006–5196, 95 ppGoogle Scholar
  121. Stanton JS, Qi SL (2007) Groundwater quality of the northern High Plains aquifer, 1997, 2002–04. US Geol Surv Sci Invest Rep 2006–5138, 60 ppGoogle Scholar
  122. Steenhuis TS, Jackson CD, Kung SKJ, Brutsaert W (1985) Measurement of groundwater recharge on eastern Long Island. J Hydrol 79:145–169CrossRefGoogle Scholar
  123. Stotler R, Harvey FE, Gosselin DC (2010) A Black Hills-Madison aquifer origin for Dakota aquifer groundwater in northeastern Nebraska. Ground Water 48:448–464CrossRefGoogle Scholar
  124. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  125. Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey Coastal Plain. Water Resour Res 32:1023–1038CrossRefGoogle Scholar
  126. Tamers CH (1975) Validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239CrossRefGoogle Scholar
  127. Tesoriero AJ, Spruill TB, Mew HE, Farrell KM, Harden SL (2005) Nitrogen transport and transformations in a Coastal Plain watershed: influence of geomorphology on flow paths and residence times. Water Resour Res. doi:10.1029/2003WR002953 Google Scholar
  128. Tesoriero AJ, Saad DA, Burow KR, Frick EA, Puckett LJ, Barbash JE (2007) Linking groundwater age and chemistry data along flow paths: implications for trends and transformations of nitrate and pesticides. J Cont Hydrol 94:139–155CrossRefGoogle Scholar
  129. Thatcher LL (1962) The distribution of tritium fallout in precipitation over North America. Bull Int Assoc Sci Hydrol 7:48–58CrossRefGoogle Scholar
  130. Thiros SA (2003) Quality and sources of shallow groundwater in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah. US Geol Surv Water Resour Invest Rep 03–4028, 74 ppGoogle Scholar
  131. Thomas MA (2000) The effect of residential development on groundwater quality near Detroit, Michigan. J Am Water Resour Assoc 36:1023–1038CrossRefGoogle Scholar
  132. Tyler SW, Chapman JB, Conrad SH, Hammermeister D, Blout D, Miller J, Sully M, Ginanni J (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour Res 32:1481–1499CrossRefGoogle Scholar
  133. US Geological Survey (2009) Ground water atlas of the United States. http://pubs.usgs.gov/ha/ha730/. Cited 31 July 2009
  134. Verhagen BT (1992) Detailed geohydrology with environmental isotopes: a case study at Serowe, Botswana. Isotope Techniques in Water Resources Development 1991, International Atomic Energy Agency, Vienna, pp 345–362Google Scholar
  135. Vogel JC (1967) Investigation of groundwater flow with radiocarbon. Isotopes in Hydrology, International Atomic Energy Agency, Vienna, pp 355–368Google Scholar
  136. Wassenaar LI, Hendry MJ, Harrington N (2006) Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ Sci Technol 40:4626–4632CrossRefGoogle Scholar
  137. Williamson AK, Prudic DE, Swain LA (1989) Groundwater flow in the Central Valley, California. US Geol Surv Prof Paper 1401–D, 127 ppGoogle Scholar
  138. Wolock DM (2003) Estimated mean annual natural groundwater recharge in the conterminous United States. US Geol Surv Open-File Rep 03–311, digital datasetGoogle Scholar
  139. Zongyu C, Zhenlong N, Zhaoji Z, Jixiang Q, Yunju N (2005) Isotopes and sustainability of ground water resources, North China Plain. Ground Water 43:485–493CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • P. B. McMahon
    • 1
  • L. N. Plummer
    • 2
  • J. K. Böhlke
    • 2
  • S. D. Shapiro
    • 2
  • S. R. Hinkle
    • 3
  1. 1.US Geological SurveyDenverUSA
  2. 2.US Geological SurveyRestonUSA
  3. 3.US Geological SurveyPortlandUSA

Personalised recommendations